Switch to: References

Add citations

You must login to add citations.
  1. Waddington’s Unfinished Critique of Neo-Darwinian Genetics: Then and Now.Adam S. Wilkins - 2008 - Biological Theory 3 (3):224-232.
    C.H. Waddington is today remembered chiefly as a Drosophila developmental geneticist who developed the concepts of “canalization” and “the epigenetic landscape.” In his lifetime, however, he was widely perceived primarily as a critic of Neo-Darwinian evolutionary theory. His criticisms of Neo-Darwinian evolutionary theory were focused on what he saw as unrealistic, “atomistic” models of both gene selection and trait evolution. In particular, he felt that the Neo-Darwinians badly neglected the phenomenon of extensive gene interactions and that the “randomness” of mutational (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Speciation and the neutral theory of biodiversity.Michael Kopp - 2010 - Bioessays 32 (7):564-570.
    The neutral theory of biodiversity purports that patterns in the distribution and abundance of species do not depend on adaptive differences between species (i.e. niche differentiation) but solely on random fluctuations in population size (“ecological drift”), along with dispersal and speciation. In this framework, the ultimate driver of biodiversity is speciation. However, the original neutral theory made strongly simplifying assumptions about the mechanisms of speciation, which has led to some clearly unrealistic predictions. In response, several recent studies have combined neutral (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mitochondrial bioenergetics as a major motive force of speciation.Moran Gershoni, Alan R. Templeton & Dan Mishmar - 2009 - Bioessays 31 (6):642-650.
    Mitochondrial bioenergetics plays a key role in multiple basic cellular processes, such as energy production, nucleotide biosynthesis, and iron metabolism. It is an essential system for animals' life and death (apoptosis) and it is required for embryo development. This, in conjunction with its being subjected to adaptive processes in multiple species and its gene products being involved in the formation of reproductive barriers in animals, raises the possibility that mitochondrial bioenergetics could be a candidate genetic mechanism of speciation. Here, we (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations