7 found
Order:
Disambiguations
Serikzhan A. Badaev [5]Serikzhan Badaev [2]
  1.  23
    On isomorphism classes of computably enumerable equivalence relations.Uri Andrews & Serikzhan A. Badaev - 2020 - Journal of Symbolic Logic 85 (1):61-86.
    We examine how degrees of computably enumerable equivalence relations under computable reduction break down into isomorphism classes. Two ceers are isomorphic if there is a computable permutation of ω which reduces one to the other. As a method of focusing on nontrivial differences in isomorphism classes, we give special attention to weakly precomplete ceers. For any degree, we consider the number of isomorphism types contained in the degree and the number of isomorphism types of weakly precomplete ceers contained in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  2.  14
    Weakly precomplete computably enumerable equivalence relations.Serikzhan Badaev & Andrea Sorbi - 2016 - Mathematical Logic Quarterly 62 (1-2):111-127.
    Using computable reducibility ⩽ on equivalence relations, we investigate weakly precomplete ceers (a “ceer” is a computably enumerable equivalence relation on the natural numbers), and we compare their class with the more restricted class of precomplete ceers. We show that there are infinitely many isomorphism types of universal (in fact uniformly finitely precomplete) weakly precomplete ceers, that are not precomplete; and there are infinitely many isomorphism types of non‐universal weakly precomplete ceers. Whereas the Visser space of a precomplete ceer always (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  12
    A decomposition of the Rogers semilattice of a family of d.c.e. sets.Serikzhan A. Badaev & Steffen Lempp - 2009 - Journal of Symbolic Logic 74 (2):618-640.
    Khutoretskii's Theorem states that the Rogers semilattice of any family of c.e. sets has either at most one or infinitely many elements. A lemma in the inductive step of the proof shows that no Rogers semilattice can be partitioned into a principal ideal and a principal filter. We show that such a partitioning is possible for some family of d.c.e. sets. In fact, we construct a family of c.e. sets which, when viewed as a family of d.c.e. sets, has (up (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  18
    On diagonal functions for equivalence relations.Serikzhan A. Badaev, Nikolay A. Bazhenov, Birzhan S. Kalmurzayev & Manat Mustafa - 2023 - Archive for Mathematical Logic 63 (3):259-278.
    We work with weakly precomplete equivalence relations introduced by Badaev. The weak precompleteness is a natural notion inspired by various fixed point theorems in computability theory. Let E be an equivalence relation on the set of natural numbers $$\omega $$, having at least two classes. A total function f is a diagonal function for E if for every x, the numbers x and f(x) are not E-equivalent. It is known that in the case of c.e. relations E, the weak precompleteness (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  11
    Rogers semilattices of families of two embedded sets in the Ershov hierarchy.Serikzhan A. Badaev, Mustafa Manat & Andrea Sorbi - 2012 - Mathematical Logic Quarterly 58 (4-5):366-376.
    Let a be a Kleene's ordinal notation of a nonzero computable ordinal. We give a sufficient condition on a, so that for every \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\Sigma ^{-1}_a$\end{document}‐computable family of two embedded sets, i.e., two sets A, B, with A properly contained in B, the Rogers semilattice of the family is infinite. This condition is satisfied by every notation of ω; moreover every nonzero computable ordinal that is not sum of any two smaller ordinals has a notation that satisfies this condition. On the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  9
    A note on partial numberings.Serikzhan Badaev & Dieter Spreen - 2005 - Mathematical Logic Quarterly 51 (2):129-136.
    The different behaviour of total and partial numberings with respect to the reducibility preorder is investigated. Partial numberings appear quite naturally in computability studies for topological spaces. The degrees of partial numberings form a distributive lattice which in the case of an infinite numbered set is neither complete nor contains a least element. Friedberg numberings are no longer minimal in this situation. Indeed, there is an infinite descending chain of non-equivalent Friedberg numberings below every given numbering, as well as an (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  20
    Friedberg numberings in the Ershov hierarchy.Serikzhan A. Badaev, Mustafa Manat & Andrea Sorbi - 2015 - Archive for Mathematical Logic 54 (1-2):59-73.
    We show that for every ordinal notation ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\xi}$$\end{document} of a nonzero computable ordinal, there exists a Σξ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^{-1}_\xi}$$\end{document}—computable family which up to equivalence has exactly one Friedberg numbering, which does not induce the least element in the corresponding Rogers semilattice.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark