Results for 'PI(3,5)P2'

6 found
Order:
  1.  13
    Phosphatidylinositol‐3,4,5‐trisphosphate: Tool of choice for class I PI 3‐kinases.Rachel Schnur Salamon & Jonathan M. Backer - 2013 - Bioessays 35 (7):602-611.
    Class I PI 3‐kinases signal by producing the signaling lipid phosphatidylinositol(3,4,5) trisphosphate, which in turn acts by recruiting downstream effectors that contain specific lipid‐binding domains. The class I PI 3‐kinases comprise four distinct catalytic subunits linked to one of seven different regulatory subunits. All the class I PI 3‐kinases produce the same signaling lipid, PIP3, and the different isoforms have overlapping expression patterns and are coupled to overlapping sets of upstream activators. Nonetheless, studies in cultured cells and in animals have (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  28
    Phosphatidylinositol 3,5‐bisphosphate: Low abundance, high significance.Amber J. McCartney, Yanling Zhang & Lois S. Weisman - 2014 - Bioessays 36 (1):52-64.
    Recent studies of the low abundant signaling lipid, phosphatidylinositol 3,5‐bisphosphate (PI(3,5)P2), reveal an intriguingly diverse list of downstream pathways, the intertwined relationship between PI(3,5)P2 and PI5P, as well as links to neurodegenerative diseases. Derived from the structural lipid phosphatidylinositol, PI(3,5)P2 is dynamically generated on multiple cellular compartments where interactions with an increasing list of effectors regulate many cellular pathways. A complex of proteins that includes Fab1/PIKfyve, Vac14, and Fig4/Sac3 mediates the biosynthesis of PI(3,5)P2, and mutations that disrupt complex function and/or (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  28
    How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity?Jingwei Xie, Christophe Erneux & Isabelle Pirson - 2013 - Bioessays 35 (8):733-743.
    The number of cellular events identified as being directly or indirectly modulated by phosphoinositides dramatically increased in the recent years. Part of the complexity results from the fact that the seven phosphoinositides play second messenger functions in many different areas of growth factors and insulin signaling, cytoskeletal organization, membrane dynamics, trafficking, or nuclear signaling. PtdIns(3,4)P2 is commonly reported as a product of the SH2 domain‐containing inositol 5‐phosphatases 1/2 (SHIP1 and SHIP2) that dephosphorylate PtdIns(3,4,5)P3 at the 5‐position. Here we discuss recent (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  25
    Phosphatidylinositol 3‐phosphate, a lipid that regulates membrane dynamics, protein sorting and cell signalling.Kay O. Schink, Camilla Raiborg & Harald Stenmark - 2013 - Bioessays 35 (10):900-912.
    Phosphatidylinositol 3‐phosphate (PtdIns3P) is generated on the cytosolic leaflet of cellular membranes, primarily by phosphorylation of phosphatidylinositol by class II and class III phosphatidylinositol 3‐kinases. The bulk of this lipid is found on the limiting and intraluminal membranes of endosomes, but it can also be detected in domains of phagosomes, autophagosome precursors, cytokinetic bridges, the plasma membrane and the nucleus. PtdIns3P controls cellular functions through recruitment of specific protein effectors, many of which contain FYVE or PX domains. Cellular processes known (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  25
    Arf6 and the 5'phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors.Ashley A. George, Sara Hayden, Gail R. Stanton & Susan E. Brockerhoff - 2016 - Bioessays 38 (S1):119-135.
    Abnormalities in the ability of cells to properly degrade proteins have been identified in many neurodegenerative diseases. Recent work has implicated synaptojanin 1 (SynJ1) in Alzheimer's disease and Parkinson's disease, although the role of this polyphosphoinositide phosphatase in protein degradation has not been thoroughly described. Here, we dissected in vivo the role of SynJ1 in endolysosomal trafficking in zebrafish cone photoreceptors using a SynJ1‐deficient zebrafish mutant, nrca14. We found that loss of SynJ1 leads to specific accumulation of late endosomes and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  6.  13
    Pairing phosphoinositides with calcium ions in endolysosomal dynamics.Dongbiao Shen, Xiang Wang & Haoxing Xu - 2011 - Bioessays 33 (6):448-457.
    The direction and specificity of endolysosomal membrane trafficking is tightly regulated by various cytosolic and membrane‐bound factors, including soluble NSF attachment protein receptors (SNAREs), Rab GTPases, and phosphoinositides. Another trafficking regulatory factor is juxta‐organellar Ca2+, which is hypothesized to be released from the lumen of endolysosomes and to be present at higher concentrations near fusion/fission sites. The recent identification and characterization of several Ca2+ channel proteins from endolysosomal membranes has provided a unique opportunity to examine the roles of Ca2+ and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark