Results for 'FAPP'

6 found
Order:
  1.  19
    QBism, FAPP and the Quantum Omelette.Christian de Ronde - unknown
    In this paper we discuss the so called "quantum omelette" created by Bohr and Heisenberg through the mix of objective accounts and subjective ones within the analysis of Quantum Mechanics. We will begin by addressing the difficult relation between ontology and epistemology within the history of both physics and philosophy. We will then argue that the present "quantum omelette" is being presently cooked in two opposite directions: the first scrambling ontological problems with epistemological solutions and the second scrambling epistemic approaches (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  26
    Beyond Fapp: Three Approaches to Improving Orthodox Quantum Theory and An Experimental Test.Nicholas Maxwell - 1993 - In A. van der Merwe, F. Selleri & G. Tarozzi (eds.), Bell's Theorem and the Foundations of Modern Physics. World Scientific.
    Because it fails to solve the wave-particle problem, orthodox quantum theory is obliged to be about observables and not quantum beables. As a result the theory is imprecise, ambiguous, ad hoc, lacking in explanatory power, restricted in scope and resistant to unification. A new version of quantum theory is needed that is about quantum beables.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Decoherence and Ontology (or: How I learned to stop worrying and love FAPP).David Wallace - 2010 - In Simon Saunders, Jon Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press. pp. 53--72.
    NGC 1300 (shown in figure 1) is a spiral galaxy 65 million light years from Earth.1 We have never been there, and (although I would love to be wrong about this) we will never go there; all we will ever know about NGC 1300 is what we can see of it from sixty-five million light years away, and what we can infer from our best physics. Fortunately, “what we can infer from our best physics” is actually quite a lot. To (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   42 citations  
  4.  48
    Decoherence and Ontology, or: How I Learned To Stop Worrying And Love FAPP.David Wallace - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford, U.K.: Oxford University Press.
    I make the case that the Universe according to unitary quantum theory has a branching structure, and so can literally be regarded as a "many-worlds" theory. These worlds are not part of the _fundamental_ ontology of quantum theory - instead, they are to be understood as structures, or patterns, emergent from the underlying theory, through the dynamical process of decoherence. That they are structures in this sense does not mean that they are in any way unreal: indeed, pretty much all (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   42 citations  
  5.  45
    Locality and Measurements Within the SR Model for an Objective Interpretation of Quantum Mechanics.Claudio Garola & Jarosław Pykacz - 2004 - Foundations of Physics 34 (3):449-475.
    One of the authors has recently propounded an SR model which shows, circumventing known no-go theorems, that an objective interpretation of quantum mechanics is possible. We consider here compound physical systems and show why the proofs of nonlocality of QM do not hold within the SR model, which is slightly simplified in this paper. We also discuss quantum measurement theory within this model, note that the objectification problem disappears since the measurement of any property simply reveals its unknown value, and (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  6. Feyerabend on the Quantum Theory of Measurement: A Reassessment.Daniel Kuby & Patrick Fraser - 2022 - International Studies in the Philosophy of Science 35 (1):23-49.
    In 1957, Feyerabend delivered a paper titled ‘On the Quantum-Theory of Measurement’ at the Colston Research Symposium in Bristol to sketch a completion of von Neumann's measurement scheme without collapse, using only unitary quantum dynamics and well-motivated statistical assumptions about macroscopic quantum systems. Feyerabend's paper has been recognised as an early contribution to quantum measurement, anticipating certain aspects of decoherence. Our paper reassesses the physical and philosophical content of Feyerabend's contribution, detailing the technical steps as well as its overall philosophical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation