50 found
Order:
  1.  30
    On the Mathematical and Foundational Significance of the Uncountable.Dag Normann & Sam Sanders - 2019 - Journal of Mathematical Logic 19 (1):1950001.
    We study the logical and computational properties of basic theorems of uncountable mathematics, including the Cousin and Lindelöf lemma published in 1895 and 1903. Historically, these lemmas were among the first formulations of open-cover compactness and the Lindelöf property, respectively. These notions are of great conceptual importance: the former is commonly viewed as a way of treating uncountable sets like e.g. [Formula: see text] as “almost finite”, while the latter allows one to treat uncountable sets like e.g. [Formula: see text] (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  10
    Computability Theory, Nonstandard Analysis, and Their Connections.Dag Normann & Sam Sanders - 2019 - Journal of Symbolic Logic 84 (4):1422-1465.
    We investigate the connections between computability theory and Nonstandard Analysis. In particular, we investigate the two following topics and show that they are intimately related. A basic property of Cantor space$2^ $ is Heine–Borel compactness: for any open covering of $2^ $, there is a finite subcovering. A natural question is: How hard is it to compute such a finite subcovering? We make this precise by analysing the complexity of so-called fan functionals that given any $G:2^ \to $, output a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  3.  15
    The Strength of Compactness in Computability Theory and Nonstandard Analysis.Dag Normann & Sam Sanders - 2019 - Annals of Pure and Applied Logic 170 (11):102710.
  4.  14
    Pincherle's Theorem in Reverse Mathematics and Computability Theory.Dag Normann & Sam Sanders - 2020 - Annals of Pure and Applied Logic 171 (5):102788.
    We study the logical and computational properties of basic theorems of uncountable mathematics, in particular Pincherle's theorem, published in 1882. This theorem states that a locally bounded function is bounded on certain domains, i.e. one of the first ‘local-to-global’ principles. It is well-known that such principles in analysis are intimately connected to (open-cover) compactness, but we nonetheless exhibit fundamental differences between compactness and Pincherle's theorem. For instance, the main question of Reverse Mathematics, namely which set existence axioms are necessary to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  26
    Set Recursion and Πhalf-Logic.Jean-Yves Girard & Dag Normann - 1985 - Annals of Pure and Applied Logic 28 (3):255-286.
  6.  15
    Algebraic Recursion Theory.Dag Normann - 1988 - Journal of Symbolic Logic 53 (3):986-987.
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  7.  30
    Total Objects in Inductively Defined Types.Lill Kristiansen & Dag Normann - 1997 - Archive for Mathematical Logic 36 (6):405-436.
    . Coherence-spaces and domains with totality are used to give interpretations of inductively defined types. A category of coherence spaces with totality is defined and the closure of positive inductive type constructors is analysed within this category. Type streams are introduced as a generalisation of types defined by strictly positive inductive definition. A semantical analysis of type streams with continuous recursion theorems is established. A hierarchy of domains with totality defined by positive induction is defined, and density for a sub-hierarchy (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  8.  15
    The Continuous Functionals; Computations, Recursions and Degrees.Dag Normann - 1981 - Annals of Mathematical Logic 21 (1):1.
  9.  6
    Recursion on the Countable Functionals.Dag Normann - 1980 - Springer Verlag.
  10.  3
    Closing the Gap Between the Continuous Functionals and Recursion in $^3E$.Dag Normann - 1997 - Archive for Mathematical Logic 36 (4-5):269-287.
    . We show that the length of a hierarchy of domains with totality, based on the standard domain for the natural numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb N}$\end{document} and closed under dependent products of continuously parameterised families of domains will be the first ordinal not recursive in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $^3E$\end{document} and any real. As a part of the proof we show that the domains of the hierarchy (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  11.  13
    The 1-Section of a Countable Functional.Dag Normann & Stan S. Wainer - 1980 - Journal of Symbolic Logic 45 (3):549-562.
  12.  66
    Countable Functionals and the Projective Hierarchy.Dag Normann - 1981 - Journal of Symbolic Logic 46 (2):209-215.
  13. Computing with Functionals: Computability Theory or Computer Science?Dag Normann - 2006 - Bulletin of Symbolic Logic 12 (1):43-59.
    We review some of the history of the computability theory of functionals of higher types, and we will demonstrate how contributions from logic and theoretical computer science have shaped this still active subject.
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  19
    Akira Kanda. Recursion Theorems and Effective Domains. Annals of Pure and Applied Logic, Vol. 38 , Pp. 289–300.Dag Normann - 1991 - Journal of Symbolic Logic 56 (1):335.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  15.  17
    Arnold Beckmann and Wolfram Pohlers. Applications of Cut-Free Infinitary Derivations to Generalized Recursion Theory. Annals of Pure and Applied Logic, Vol. 94 , Pp. 7–19. [REVIEW]Dag Normann - 2000 - Bulletin of Symbolic Logic 6 (2):221-222.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16.  66
    Computability Over the Partial Continuous Functionals.Dag Normann - 2000 - Journal of Symbolic Logic 65 (3):1133-1142.
    We show that to every recursive total continuous functional $\Phi$ there is a PCF-definable representative $\Psi$ of $\Phi$ in the hierarchy of partial continuous functionals, where PCF is Plotkin's programming language for computable functionals. PCF-definable is equivalent to Kleene's S1-S9-computable over the partial continuous functionals.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  12
    Lawrence S. Moss. Power Set Recursion. Annals of Pure and Applied Logic, Vol. 71 , Pp. 247–306.Dag Normann - 1996 - Journal of Symbolic Logic 61 (4):1388-1389.
  18.  14
    David Marker, Lectures on Infinitary Model Theory: Series: Lecture Notes in Logic, Vol. 46, 2016, Pp. 192. ISBN-13: 978-1107181939 $118.00, ISBN-10: 1107181933 $107.08.Dag Normann - 2018 - Studia Logica 106 (6):1319-1323.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  24
    A Jump Operator in Set Recursion.Dag Normann - 1979 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 25 (13-18):251-264.
  20.  20
    Computability in Europe 2011.Sam Buss, Benedikt Löwe, Dag Normann & Ivan Soskov - 2013 - Annals of Pure and Applied Logic 164 (5):509-510.
  21.  20
    Limit Spaces and Transfinite Types.Dag Normann & Geir Waagb - 2002 - Archive for Mathematical Logic 41 (6):525-539.
    We give a characterisation of an extension of the Kleene-Kreisel continuous functionals to objects of transfinite types using limit spaces of transfinite types.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  22.  7
    Gerald E. Sacks. Higher Recursion Theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin Etc. 1990, Xv + 344 Pp. [REVIEW]Dag Normann - 1992 - Journal of Symbolic Logic 57 (2):761-762.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  23.  15
    Review: Akira Kanda, Recursion Theorems and Effective Domains. [REVIEW]Dag Normann - 1991 - Journal of Symbolic Logic 56 (1):335-335.
  24. R.E. Degrees of Continuous Functionals.Dag Normann - 1983 - Archive for Mathematical Logic 23 (1):79-98.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  25.  25
    Embeddability of Ptykes.Jean-Yves Girard & Dag Normann - 1992 - Journal of Symbolic Logic 57 (2):659-676.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  26.  35
    On Abstract 1-Sections.Dag Normann - 1974 - Synthese 27 (1-2):259 - 263.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  27.  14
    Characterizing the Continuous Functionals.Dag Normann - 1983 - Journal of Symbolic Logic 48 (4):965-969.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  28.  13
    General Type-Structures of Continuous and Countable Functionals.Dag Normann - 1983 - Mathematical Logic Quarterly 29 (4):177-192.
    Direct download  
     
    Export citation  
     
    Bookmark  
  29.  13
    Review: Lawrence S. Moss, Power Set Recursion. [REVIEW]Dag Normann - 1996 - Journal of Symbolic Logic 61 (4):1388-1389.
  30.  11
    Continuity, Proof Systems and the Theory of Transfinite Computations.Dag Normann - 2002 - Archive for Mathematical Logic 41 (8):765-788.
    . We use the theory of domains with totality to construct some logics generalizing ω-logic and β-logic and we prove a completenes theorem for these logics. The key application is E-logic, the logic related to the functional 3E. We prove a compactness theorem for sets of sentences semicomputable in 3E.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  31.  6
    Degrees of Functionals.Dag Normann - 1979 - Annals of Mathematical Logic 16 (3):269.
  32.  10
    Hereditarily Effective Typestreams.Dag Normann - 1997 - Archive for Mathematical Logic 36 (3):219-225.
    . We prove that the hierarchy of hereditarily effective typestreams, that are effective models of inductivly defined types, has the length of the first recursivly inaccessible ordinal.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  11
    The Extensional Ordering of the Sequential Functionals.Dag Normann & V. Yu Sazonov - 2012 - Annals of Pure and Applied Logic 163 (5):575-603.
  34.  8
    L. L. Ivanov. Algebraic Recursion Theory. Edited by J. L. Bell. Mathematics and its Applications. Ellis Horwood Limited, Chichester, West Sussex, 1987 , Also Distributed by Halsted Press, John Wiley & Sons, New York Etc., 256 Pp. [REVIEW]Dag Normann - 1988 - Journal of Symbolic Logic 53 (3):986-987.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  9
    Review: L. L. Ivanov, J. L. Bell, Algebraic Recursion Theory. [REVIEW]Dag Normann - 1988 - Journal of Symbolic Logic 53 (3):986-987.
  36.  8
    Experiments on an Internal Approach to Typed Algorithms in Analysis.Dag Normann - 2011 - In S. B. Cooper & Andrea Sorbi (eds.), Computability in Context: Computation and Logic in the Real World. World Scientific. pp. 297.
  37.  6
    A Jump Operator in Set Recursion.Dag Normann - 1982 - Journal of Symbolic Logic 47 (4):902-902.
    Direct download  
     
    Export citation  
     
    Bookmark  
  38.  6
    Hyperfinite Type Structures.Dag Normann, Erik Palmgren & Viggo Stoltenberg-Hansen - 1999 - Journal of Symbolic Logic 64 (3):1216-1242.
    Direct download  
     
    Export citation  
     
    Bookmark  
  39.  13
    Models for Recursion Theory.Johan Moldestad & Dag Normann - 1976 - Journal of Symbolic Logic 41 (4):719-729.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  40.  9
    Review: Arnold Beckmann, Wolfram Pohlers, Applications of Cut-Free Infinitary Derivations to Generalized Recursion Theory. [REVIEW]Dag Normann - 2000 - Bulletin of Symbolic Logic 6 (2):221-222.
  41.  7
    The Computational Power of ℳ.Dag Normann & Christian Rørdam - 2002 - Mathematical Logic Quarterly 48 (1):117-124.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  42.  7
    A Jump Operator in Set Recursion.Dag Normann - 1979 - Mathematical Logic Quarterly 25 (13‐18):251-264.
  43.  7
    Review: Dimiter G. Skordev, Computability in Combinatory Spaces. An Algebraic Generalization of Abstract First Order Computability. [REVIEW]Dag Normann - 1995 - Journal of Symbolic Logic 60 (2):695-696.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  44.  7
    Review: Gerald E. Sacks, Higher Recursion Theory. [REVIEW]Dag Normann - 1992 - Journal of Symbolic Logic 57 (2):761-762.
  45.  6
    Skordev Dimiter G.. Computability in Combinatory Spaces. An Algebraic Generalization of Abstract First Order Computability. Mathematics and its Applications , Vol. 55. Kluwer Academic Publishers, Dordrecht, Boston, and London, 1992, Xiv + 320 Pp. [REVIEW]Dag Normann - 1995 - Journal of Symbolic Logic 60 (2):695-696.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46.  7
    A Continuous Functional with Noncollapsing Hierarchy.Dag Normann - 1978 - Journal of Symbolic Logic 43 (3):487-491.
  47.  15
    Representation Theorems for Transfinite Computability and Definability.Dag Normann - 2002 - Archive for Mathematical Logic 41 (8):721-741.
    . We show how Kreisel's representation theorem for sets in the analytical hierarchy can be generalized to sets defined by positive induction and use this to estimate the complexity of constructions in the theory of domains with totality.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  4
    The Computational Power of ℳω.Dag Normann & Christian Rørdam - 2002 - Mathematical Logic Quarterly 48 (1):117-124.
    We prove that the Kleene schemes for primitive recursion relative to the μ-operator, relativized to some nondeterministic objects, have the same power to express total functionals when interpreted over the partial continuous functionals and over the Kleene-Kreisel continuous functionals. Relating the former interpretation to Niggl's ℳω we prove Nigg's conjecture that ℳω is strictly weaker than Plotkin's PCF + PA.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  4
    Aspects of the Continuous Functionals.Dag Normann - 1985 - In Anil Nerode & Richard A. Shore (eds.), Recursion Theory. American Mathematical Society. pp. 42--171.
  50.  12
    Hyperfinite Type Structures.Dag Normann, Erik Palmgren & Viggo Stoltenberg-Hansen - 1999 - Journal of Symbolic Logic 64 (3):1216-1242.