Archiv für Geschichte der Philosophie 102 (3):379-425 (2020)
Authors |
|
Abstract |
Avicenna believed in mathematical finitism. He argued that magnitudes and sets of ordered numbers and numbered things cannot be actually infinite. In this paper, I discuss his arguments against the actuality of mathematical infinity. A careful analysis of the subtleties of his main argument, i. e., The Mapping Argument, shows that, by employing the notion of correspondence as a tool for comparing the sizes of mathematical infinities, he arrived at a very deep and insightful understanding of the notion of mathematical infinity, one that is much more modern than we might expect. I argue, moreover, that Avicenna’s mathematical finitism is interwoven with his literalist ontology of mathematics, according to which mathematical objects are properties of existing physical objects.
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
ISBN(s) | |
DOI | 10.1515/agph-2017-0032 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
The Child's Conception of Number.J. Piaget - 1953 - British Journal of Educational Studies 1 (2):183-184.
The Complete Works of Aristotle the Revised Oxford Translation. Aristoteles - 1984 - Princeton University Press, 1984.
Aristotle on Geometrical Objects.Ian Mueller - 1970 - Archiv für Geschichte der Philosophie 52 (2):156-171.
Estimation ( Wahm) in Avicenna: The Logical and Psychological Dimensions.Deborah L. Black - 1993 - Dialogue 32 (2):219-.
View all 23 references / Add more references
Citations of this work BETA
Arabic and Islamic Natural Philosophy and Natural Science.Jon McGinnis - 2008 - Stanford Encyclopedia of Philosophy.
Similar books and articles
Avicenna on the Nature of Mathematical Objects.Mohammad Saleh Zarepour - 2016 - Dialogue 55 (3):511-536.
El Infinito Matematico.Cañón Loyes Camino - 2017 - Revista Portuguesa de Filosofia 73 (3-4):1295-1318.
Avicenna: Mathematics and Philosophy.Roshdi Rashed - 2018 - In Hassan Tahiri (ed.), The Philosophers and Mathematics: Festschrift for Roshdi Rashed. Springer Verlag. pp. 249-262.
Mathematical, Philosophical and Semantic Considerations on Infinity : General Concepts.José-Luis Usó-Doménech, Josué Antonio Nescolarde Selva & Mónica Belmonte Requena - 2016 - Foundations of Science 21 (4):615-630.
Mathematics and Theology in the Thought of Nicholas of Cusa.Roman Murawski - 2019 - Logica Universalis 13 (4):477-485.
Defending the Indispensability Argument: Atoms, Infinity and the Continuum.Eduardo Castro - 2013 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 44 (1):41-61.
Wittgenstein’s Constructivization of Euler’s Proof of the Infinity of Primes.Paolo Mancosu & Mathieu Marion - 2003 - Vienna Circle Institute Yearbook 10:171-188.
Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
In Search of $$\aleph _{0}$$ ℵ 0 : How Infinity Can Be Created.Markus Pantsar - 2015 - Synthese 192 (8):2489-2511.
Part II. Perspectives on Infinity From Mathematics : 2. The Mathematical Infinity / Enrico Bombieri ; 3. Warning Signs of a Possible Collapse of Contemporary Mathematics. [REVIEW]Edward Nelson - 2011 - In Michał Heller & W. H. Woodin (eds.), Infinity: New Research Frontiers. Cambridge University Press.
Mathematical Intelligence, Infinity and Machines: Beyond Godelitis.Giuseppe Longo - 1999 - Journal of Consciousness Studies 6 (11-12):11-12.
Analytics
Added to PP index
2020-09-12
Total views
8 ( #1,002,575 of 2,498,778 )
Recent downloads (6 months)
5 ( #139,668 of 2,498,778 )
2020-09-12
Total views
8 ( #1,002,575 of 2,498,778 )
Recent downloads (6 months)
5 ( #139,668 of 2,498,778 )
How can I increase my downloads?
Downloads