Proliferation of dinoflagellates: blooming or bleaching

Bioessays 27 (7):730-740 (2005)
  Copy   BIBTEX

Abstract

The dinoflagellates, a diverse sister group of the malaria parasites, are the major agents causing harmful algal blooms and are also the symbiotic algae of corals. Dinoflagellate nuclei differ significantly from other eukaryotic nuclei by having extranuclear spindles, no nucleosomes and enormous genomes in liquid crystal states. These cytological characteristics were related to the acquisition of prokaryotic genes during evolution (hence Mesokaryotes), which may also account for the biochemical diversity and the relatively slow growth rates of dinoflagellates. The fact that the proliferation of many dinoflagellates is sensitive to turbulence may be due to the physiological requirements of the genome's liquid crystal states. Mechanical stress and anti‐microtubule drugs induce cell cycle arrest mainly in G1, implicating a role for the permanent cortical microtubular cytoskeleton in mechanotransduction. The cell cycles of photosynthetic dinoflagellates are also gated by the circadian rhythm, with cell division occurring mainly at the end of the dark phase. Cell growth and the biosynthesis of many toxins occur during the light phase, corresponding to G1 in the cell cycle. The dinoflagellates also embody several options for coupling cell cycle progression to cell growth, enabling them to make the best use of available resources and possibly preparing them for a symbiotic existence. BioEssays 27:730–740, 2005. © 2005 Wiley Periodicals, Inc.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,709

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2014-01-19

Downloads
29 (#548,167)

6 months
5 (#626,659)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Joseph Wong
University of Manchester

Citations of this work

No citations found.

Add more citations