Control of osteogenesis by the canonical Wnt and BMP pathways in vivo

Bioessays 34 (11):953-962 (2012)
  Copy   BIBTEX

Abstract

Although many regulators of skeletogenesis have been functionally characterized, one current challenge is to integrate this information into regulatory networks. Here, we discuss how the canonical Wnt and Smad‐dependent BMP pathways interact together and play antagonistic or cooperative roles at different steps of osteogenesis, in the context of the developing vertebrate embryo. Early on, BMP signaling specifies multipotent mesenchymal cells into osteochondroprogenitors. In turn, the function of Wnt signaling is to drive these osteochondroprogenitors towards an osteoblastic fate. Subsequently, both pathways promote osteoblast differentiation, albeit with notable mechanistic differences. In osteocytes, the ultimate stage of osteogenic differentiation, the Wnt and BMP pathways exert opposite effects on the control of bone resorption by osteoclasts. We describe how the dynamic molecular wiring of the canonical Wnt and Smad‐dependent BMP signaling into the skeletal cell genetic programme is critical for the generation of bone‐specific cell types during development.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,783

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Pathways to biomedical discovery.Paul Thagard - 2003 - Philosophy of Science 70 (2):235-254.
Theories of Osteogenesis in the Eighteenth Century.François Delaportex - 1983 - Journal of the History of Biology 16 (3):343 - 360.
What Is Gibbs’s Canonical Distribution?Kevin Davey - 2009 - Philosophy of Science 76 (5):970-983.

Analytics

Added to PP
2013-10-28

Downloads
16 (#904,500)

6 months
3 (#969,763)

Historical graph of downloads
How can I increase my downloads?