The notion of bilattice was introduced by Ginsberg, and further examined by Fitting, as a general framework for many applications. In the present paper we develop proof systems, which correspond to bilattices in an essential way. For this goal we introduce the notion of logical bilattices. We also show how they can be used for efficient inferences from possibly inconsistent data. For this we incorporate certain ideas of Kifer and Lozinskii, which happen to suit well the context of our work. (...) The outcome are paraconsistent logics with a lot of desirable properties.1. (shrink)
We provide a general investigation of Logic in which the notion of a simple consequence relation is taken to be fundamental. Our notion is more general than the usual one since we give up monotonicity and use multisets rather than sets. We use our notion for characterizing several known logics (including Linear Logic and non-monotonic logics) and for a general, semantics-independent classi cation of standard connectives via equations on consequence relations (these include Girard's \multiplicatives" and \additives"). We next investigate the (...) standard methods for uniformly representing consequence relations: Hilbert type, Natural Deduction and Gentzen type. The advantages and disadvantages of using each system and what should be taken as.. (shrink)
Linear logic is a new logic which was recently developed by Girard in order to provide a logical basis for the study of parallelism. It is described and investigated in Gi]. Girard's presentation of his logic is not so standard. In this paper we shall provide more standard proof systems and semantics. We shall also extend part of Girard's results by investigating the consequence relations associated with Linear Logic and by proving corresponding str ong completeness theorems. Finally, we shall investigate (...) the relation between Linear Logic and previously known systems, especially Relevance logics. (shrink)
Until not too many years ago, all logics except classical logic (and, perhaps, intuitionistic logic too) were considered to be things esoteric. Today this state of a airs seems to have completely been changed. There is a growing interest in many types of nonclassical logics: modal and temporal logics, substructural logics, paraconsistent logics, non-monotonic logics { the list is long. The diversity of systems that have been proposed and studied is so great that a need is felt by many researchers (...) to try to put some order in the present logical jungle. Thus Cl91], Ep90] and Wo88] are three recent books in which an attempt is made to develop a general theoretical framework for the study of logics. On the more pragmatic side, several systems have been developed with the goal of providing a computerized logical framework in which many di erent logical systems can be implemented in a uniform way. An example is the Edinburgh LF( HHP91]). (shrink)
We suggest two precise abstract definitions of the notion of ‘relevance logic’ which are both independent of any proof system or semantics. We show that according to the simpler one, R → source is the minimal relevance logic, but R itself is not. In contrast, R and many other logics are relevance logics according to the second definition, while all fragments of linear logic are not.
. The paper presents a method for transforming a given sound and complete n-sequent proof system into an equivalent sound and complete system of ordinary sequents. The method is applicable to a large, central class of (generalized) finite-valued logics with the language satisfying a certain minimal expressiveness condition. The expressiveness condition decrees that the truth-value of any formula φ must be identifiable by determining whether certain formulas uniformly constructed from φ have designated values or not. The transformation preserves the general (...) structure of proofs in the original calculus in a way ensuring preservation of the weak cut elimination theorem under the transformation. The described transformation metod is illustrated on several concrete examples of many-valued logics, including a new application to information sources logics. (shrink)
Paradefinite logics are logics that can be used for handling contradictory or partial information. As such, paradefinite logics should be both paraconsistent and paracomplete. In this paper we consider the simplest semantic framework for introducing paradefinite logics. It consists of the four-valued matrices that expand the minimal matrix which is characteristic for first degree entailments: Dunn–Belnap matrix. We survey and study the expressive power and proof theory of the most important logics that can be developed in this framework.
Non-deterministic matrices are multiple-valued structures in which the value assigned by a valuation to a complex formula can be chosen non-deterministically out of a certain nonempty set of options. We consider two different types of semantics which are based on Nmatrices: the dynamic one and the static one . We use the Rasiowa-Sikorski decomposition methodology to get sound and complete proof systems employing finite sets of mv-signed formulas for all propositional logics based on such structures with either of the above (...) types of semantics. Later we demonstrate how these systems can be converted into cut-free ordinary Gentzen calculi which are also sound and complete for the corresponding non-deterministic semantics. As a by-product, we get new semantic characterizations for some well-known logics. (shrink)
Maximality is a desirable property of paraconsistent logics, motivated by the aspiration to tolerate inconsistencies, but at the same time retain from classical logic as much as possible. In this paper we introduce the strongest possible notion of maximal paraconsistency, and investigate it in the context of logics that are based on deterministic or non-deterministic three-valued matrices. We show that all reasonable paraconsistent logics based on three-valued deterministic matrices are maximal in our strong sense. This applies to practically all three-valued (...) paraconsistent logics that have been considered in the literature, including a large family of logics which were developed by da Costa's school. Then we show that in contrast, paraconsistent logics based on three-valued properly nondeterministic matrices are not maximal, except for a few special cases (which are fully characterized). However, these non-deterministic matrices are useful for representing in a clear and concise way the vast variety of the (deterministic) three-valued maximally paraconsistent matrices. The corresponding weaker notion of maximality, called premaximal paraconsistency, captures the "core" of maximal paraconsistency of all possible paraconsistent determinizations of a non-deterministic matrix, thus representing what is really essential for their maximal paraconsistency. (shrink)
We show by way of example how one can provide in a lot of cases simple modular semantics for rules of inference, so that the semantics of a system is obtained by joining the semantics of its rules in the most straightforward way. Our main tool for this task is the use of finite Nmatrices, which are multi-valued structures in which the value assigned by a valuation to a complex formula can be chosen non-deterministically out of a certain nonempty set (...) of options. The method is applied in the area of logics with a formal consistency operator (known as LFIs), allowing us to provide in a modular way effective, finite semantics for thousands of different LFIs. (shrink)
A proof is presented showing that there is no paraconsistent logics with a standard implication which have a three-valued characteristic matrix, and in which the replacement principle holds.
In order to handle inconsistent knowledge bases in a reasonable way, one needs a logic which allows nontrivial inconsistent theories. Logics of this sort are called paraconsistent. One of the oldest and best known approaches to the problem of designing useful paraconsistent logics is da Costa’s approach, which seeks to allow the use of classical logic whenever it is safe to do so, but behaves completely differently when contradictions are involved. Da Costa’s approach has led to the family of logics (...) of formal (in)consistency (LFIs). In this paper we provide in a modular way simple non-deterministic semantics for 64 of the most important logics from this family. Our semantics is 3-valued for some of the systems, and infinite-valued for the others. We prove that these results cannot be improved: neither of the systems with a three-valued non-deterministic semantics has either a finite characteristic ordinary matrix or a two-valued characteristic non-deterministic matrix, and neither of the other systems we investigate has a finite characteristic non-deterministic matrix. Still, our semantics provides decision procedures for all the systems investigated, as well as easy proofs of important proof-theoretical properties of them. (shrink)
We investigate two large families of logics, differing from each other by the treatment of negation. The logics in one of them are obtained from the positive fragment of classical logic (with or without a propositional constant ff for “the false”) by adding various standard Gentzen-type rules for negation. The logics in the other family are similarly obtained from LJ+, the positive fragment of intuitionistic logic (again, with or without ff). For all the systems, we provide simple semantics which is (...) based on non-deterministic four-valued or three-valued structures, and prove soundness and completeness for all of them. We show that the role of each rule is to reduce the degree of non-determinism in the corresponding systems. We also show that all the systems considered are decidable, and our semantics can be used for the corresponding decision procedures. Most of the extensions of LJ+ (with or without ff) are shown to be conservative over the underlying logic, and it is determined which of them are not. (shrink)
A quasi-canonical Gentzen-type system is a Gentzen-type system in which each logical rule introduces either a formula of the form , or of the form , and all the active formulas of its premises belong to the set . In this paper we investigate quasi-canonical systems in which exactly one of the two classical rules for negation is included, turning the induced logic into either a paraconsistent logic or a paracomplete logic, but not both. We provide a constructive coherence criterion (...) for such systems, and show that a quasi-canonical system of the type we investigate is coherent iff it is strongly paraconsistent or strongly paracomplete (in a sense defined in the paper), iff it has a trivalent, non-deterministic semantics of a special type (also defined in the paper) for which it is sound and complete. Finally, we determine when a system of this sort admits cut-elimination, and provide a simple procedure for transforming one which does not into one which does. (shrink)
A logic \ is called self-extensional if it allows to replace occurrences of a formula by occurrences of an \-equivalent one in the context of claims about logical consequence and logical validity. It is known that no three-valued paraconsistent logic which has an implication can be self-extensional. In this paper we show that in contrast, there is exactly one self-extensional three-valued paraconsistent logic in the language of \ for which \ is a disjunction, and \ is a conjunction. We also (...) investigate the main properties of this logic, determine the expressive power of its language, and provide a cut-free Gentzen-type proof system for it. (shrink)
In advanced books and courses on logic (e.g. Sm], BM]) Gentzen-type systems or their dual, tableaux, are described as techniques for showing validity of formulae which are more practical than the usual Hilbert-type formalisms. People who have learnt these methods often wonder why the Automated Reasoning community seems to ignore them and prefers instead the resolution method. Some of the classical books on AD (such as CL], Lo]) do not mention these methods at all. Others (such as Ro]) do, but (...) the connections and reasons for preference remain unclear after reading them (at least to the present author, and obviously also the authors of OS], in which a theorem-prover, based exclusively on tableaux, is described). The confusion becomes greater when the reader is introduced to Kowalski's form of a clause ( Ko], Bu]), which is nothing but a Gentzen's sequent of atomic formulae, and when he realizes that resolution is just a form of a Cut, and so that while the elimination of cuts is the principal tool in proof-theory, its use is the main technique in AD! (shrink)
A canonical Gentzen-type system is a system in which every rule has the subformula property, it introduces exactly one occurrence of a connective, and it imposes no restrictions on the contexts of its applications. A larger class of Gentzen-type systems which is also extensively in use is that of quasi-canonical systems. In such systems a special role is given to a unary connective \ of the language. Accordingly, each application of a logical rule in such systems introduces either a formula (...) of the form \\), or of the form \\), and all the active formulas of its premises belong to the set \. In this paper we investigate the whole class of quasi-canonical systems. We provide a constructive coherence criterion for such systems, and show that a quasi-canonical system is coherent iff it is analytic iff it has a characteristic non-deterministic matrix which is based on some subset of the set of the four truth-values which are used in the famous Dunn–Belnap four-valued matrix for information processing. In addition, we determine when a quasi-canonical system admits cut-elimination. (shrink)
We have avoided here the term \false", since we do not want to commit ourselves to the view that A is false precisely when it is not true. Our formulation of the intuition is therefore obviously circular, but this is unavoidable in intuitive informal characterizations of basic connectives and quanti ers.
Paraconsistent logics are logics that, in contrast to classical and intuitionistic logic, do not trivialize inconsistent theories. In this paper we take a paraconsistent view on two famous modal logics: B and S5. We use for this a well-known general method for turning modal logics to paraconsistent logics by defining a new negation as $\neg \varphi =_{Def} \sim \Box \varphi$. We show that while that makes both B and S5 members of the well-studied family of paraconsistent C-systems, they differ from (...) most other C-systems in having the important replacement property. We further show that B is a very robust C-system in the sense that almost any axiom which has been considered in the context of C-systems is either already a theorem of B or its addition to B leads to a logic that is no longer paraconsistent. There is exactly one notable exception, and the result of adding this exception to B leads to the other logic studied here, S5. (shrink)
Many efforts have been made in recent years to construct formal systems for mechanizing general mathematical reasoning. Most of these systems are based on logics which are stronger than first-order logic. However, there are good reasons to avoid using full second-order logic for this task. In this work we investigate a logic which is intermediate between FOL and SOL, and seems to be a particularly attractive alternative to both: ancestral logic. This is the logic which is obtained from FOL by (...) augmenting it with the transitive closure operator. While the study of this logic has so far been mostly model-theoretical, this work is devoted to its proof theory. Two natural Gentzen-style proof systems for ancestral logic are presented: one for the reflexive transitive closure, and one for the non-reflexive one. We show that these systems are sound for ancestral logic and provide evidence that they indeed encompass all forms of reasoning for this logic that are used in practice. The two systems are shown to be equivalent by providing translation algorithms between them. We end with an investigation of two main proof-theoretical properties: cut elimination and constructive consistency proof. (shrink)
We show that the rule that allows the inference of A from A ⊗ B is admissible in many of the basic multiplicative systems. By adding this rule to these systems we get, therefore, conservative extensions in which the tensor behaves as classical conjunction. Among the systems obtained in this way the one derived from RMIm has a particular interest. We show that this system has a simple infinite-valued semantics, relative to which it is strongly complete, and a nice cut-free (...) Gentzen-type formulation which employs hypersequents . Moreover: classical logic has a simple, strong translation into this logic. This translation uses definable connectives and preserves the consequence relation of classical logic . Similar results, but with a 3-valued semantics, obtain if instead of RMIm we use RMm. (shrink)
There is a long tradition (See e.g. [9, 10]) starting from [12], according to which the meaning of a connective is determined by the introduction and elimination rules which are associated with it. The supporters of this thesis usually have in mind natural deduction systems of a certain ideal type (explained in Section 3 below). Unfortunately, already the handling of classical negation requires rules which are not of that type. This problem can be solved in the framework of multiple-conclusion Gentzen-type (...) systems (also first introduced in [12]), where instead of introduction and elimination rules there are left introduction rules and right introduction rules. (shrink)
A paraconsistent logic is a logic which allows non-trivial inconsistent theories. One of the oldest and best known approaches to the problem of designing useful paraconsistent logics is da Costa’s approach, which seeks to allow the use of classical logic whenever it is safe to do so, but behaves completely differently when contradictions are involved. da Costa’s approach has led to the family of Logics of Formal (In)consistency (LFIs). In this paper we provide non-deterministic semantics for a very large family (...) of first-order LFIs (which includes da Costa’s original system.. (shrink)
In the paper we examine the use of non-classical truth values for dealing with computation errors in program specification and validation. In that context, 3-valued McCarthy logic is suitable for handling lazy sequential computation, while 3-valued Kleene logic can be used for reasoning about parallel computation. If we want to be able to deal with both strategies without distinguishing between them, we combine Kleene and McCarthy logics into a logic based on a non-deterministic, 3-valued matrix, incorporating both options as a (...) non-deterministic choice. If the two strategies are to be distinguished, Kleene and McCarthy logics are combined into a logic based on a 4-valued deterministic matrix featuring two kinds of computation errors which correspond to the two computation strategies described above. For the resulting logics, we provide sound and complete calculi of ordinary, two-valued sequents. (shrink)
It is well known that every propositional logic which satisfies certain very natural conditions can be characterized semantically using a multi-valued matrix ([Los and Suszko, 1958; W´ ojcicki, 1988; Urquhart, 2001]). However, there are many important decidable logics whose characteristic matrices necessarily consist of an infinite number of truth values. In such a case it might be quite difficult to find any of these matrices, or to use one when it is found. Even in case a logic does have a (...) finite characteristic matrix it might be difficult to discover this fact, or to find such a matrix. The deep reason for these difficulties is that in an ordinary multi-valued semantics the rules and axioms of a system should be considered as a whole, and there is no method for separately determining the semantic effects of each rule alone. (shrink)
We present and discuss various formalizations of Modal Logics in Logical Frameworks based on Type Theories. We consider both Hilbert- and Natural Deduction-style proof systems for representing both truth (local) and validity (global) consequence relations for various Modal Logics. We introduce several techniques for encoding the structural peculiarities of necessitation rules, in the typed -calculus metalanguage of the Logical Frameworks. These formalizations yield readily proof-editors for Modal Logics when implemented in Proof Development Environments, such as Coq or LEGO.
A paraconsistent logic is a logic which allows non-trivial inconsistent theories. One of the oldest and best known approaches to the problem of designing useful paraconsistent logics is da Costa’s approach, which seeks to allow the use of classical logic whenever it is safe to do so, but behaves completely differently when contradictions are involved. da Costa’s approach has led to the family of Logics of Formal (In)consistency (LFIs). In this paper we provide non-deterministic semantics for a very large family (...) of first-order LFIs (which includes da Costa’s original system.. (shrink)
One of the most important paraconsistent logics is the logic mCi, which is one of the two basic logics of formal inconsistency. In this paper we present a 5-valued characteristic nondeterministic matrix for mCi. This provides a quite non-trivial example for the utility and effectiveness of the use of non-deterministic many-valued semantics.
We provide a constructive, direct, and simple proof of the completeness of the cut-free part of the hypersequential calculus for G¨odel logic (thereby proving both completeness of the calculus for its standard semantics, and the admissibility of the cut rule in the full calculus). We then extend the results and proofs to derivations from assumptions, showing that such derivations can be confined to those in which cuts are made only on formulas which occur in the assumptions.
Canonical Propositional Gentzen-type systems are systems which in addition to the standard axioms and structural rules have only pure logical rules with the sub-formula property, in which exactly one occurrence of a connective is introduced in the conclusion, and no other occurrence of any connective is mentioned anywhere else. In this paper we considerably generalize the notion of a “canonical system” to first-order languages and beyond. We extend the Propositional coherence criterion for the non-triviality of such systems to rules with (...) unary quantifiers and show that it remains constructive. Then we provide semantics for such canonical systems using 2-valued non-deterministic matrices extended to languages with quantifiers, and prove that the following properties are equivalent for a canonical system G: (1) G admits Cut-Elimination, (2) G is coherent, and (3) G has a characteristic 2-valued non-deterministic matrix. (shrink)
According to Suszko's Thesis,any multi-valued semantics for a logical system can be replaced by an equivalent bivalent one. Moreover: bivalent semantics for families of logics can frequently be developed in a modular way. On the other hand bivalent semantics usually lacks the crucial property of analycity, a property which is guaranteed for the semantics of multi-valued matrices. We show that one can get both modularity and analycity by using the semantic framework of multi-valued non-deterministic matrices. We further show that for (...) using this framework in a constructive way it is best to view "truth-values" as information carriers, or "information-values". (shrink)
Hermann Weyl was one of the greatest mathematicians of the 20th century, with contributions to many branches of mathematics and physics. In 1918 he wrote a famous book, “Das Kontinuum”, on the foundations of mathematics. In that book he described mathematical analysis as a ‘house built on sand’, and tried to ‘replace this shifting foundation with pillars of enduring strength’. In this paper we reexamine and explain the philosophical and mathematical ideas that underly Weyl’s system in “Das Kontinuum”, and show (...) that they are still useful and relevant. We propose a precise formalization of that system, which is the first to be completely faithful to what is written in the book. Finally, we suggest that a certain set-theoretical modern system reflects better Weyl’s ideas than previous attempts (most notably by Feferman) of achieving this goal. (shrink)
The main goal of the paper is to suggest some analytic proof systems for LC and its finite-valued counterparts which are suitable for proof-search. This goal is achieved through following the general Rasiowa-Sikorski methodology for constructing analytic proof systems for semantically-defined logics. All the systems presented here are terminating, contraction-free, and based on invertible rules, which have a local character and at most two premises.