Jiles-Atherton Based Hysteresis Identification of Shape Memory Alloy-Actuating Compliant Mechanism via Modified Particle Swarm Optimization Algorithm

Complexity 2019:1-11 (2019)
  Copy   BIBTEX

Abstract

Shape memory alloy- based actuators are widely applied in the compliant actuating systems. However, the measured data of the SMA-based compliant actuating system reveal the input-output hysteresis behavior, and the actuating precision of the compliant actuating system could be degraded by such hysteresis nonlinearities. To characterize such nonlinearities in the SMA-based compliant actuator precisely, a Jiles-Atherton model is adopted in this paper, and a modified particle swarm optimization algorithm is proposed to identify the parameters in the Jiles-Atherton model, which is a combination of several differential nonlinear equations. Compared with the basic PSO identification algorithm, the designed MPSO algorithm can reduce the local optimum problem so that the Jiles-Atherton model with the identified parameters can show good agreements with the measured experimental data. The good capture ability of the proposed identification algorithm is also examined through the comparisons with Jiles-Atherton model using the basic PSO identification algorithm.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,881

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2019-02-12

Downloads
19 (#799,238)

6 months
3 (#976,504)

Historical graph of downloads
How can I increase my downloads?