First-Order Logic in the Medvedev Lattice

Studia Logica 103 (6):1185-1224 (2015)
  Copy   BIBTEX

Abstract

Kolmogorov introduced an informal calculus of problems in an attempt to provide a classical semantics for intuitionistic logic. This was later formalised by Medvedev and Muchnik as what has come to be called the Medvedev and Muchnik lattices. However, they only formalised this for propositional logic, while Kolmogorov also discussed the universal quantifier. We extend the work of Medvedev to first-order logic, using the notion of a first-order hyperdoctrine from categorical logic, to a structure which we will call the hyperdoctrine of mass problems. We study the intermediate logic that the hyperdoctrine of mass problems gives us, and we study the theories of subintervals of the hyperdoctrine of mass problems in an attempt to obtain an analogue of Skvortsova’s result that there is a factor of the Medvedev lattice characterising intuitionistic propositional logic. Finally, we consider Heyting arithmetic in the hyperdoctrine of mass problems and prove an analogue of Tennenbaum’s theorem on computable models of arithmetic

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 103,486

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Constructive Logic and the Medvedev Lattice.Sebastiaan A. Terwijn - 2006 - Notre Dame Journal of Formal Logic 47 (1):73-82.
Coding true arithmetic in the Medvedev and Muchnik degrees.Paul Shafer - 2011 - Journal of Symbolic Logic 76 (1):267 - 288.
Topological aspects of the Medvedev lattice.Andrew Em Lewis, Richard A. Shore & Andrea Sorbi - 2011 - Archive for Mathematical Logic 50 (3-4):319-340.
Some remarks on the algebraic structure of the Medvedev lattice.Andrea Sorbi - 1990 - Journal of Symbolic Logic 55 (2):831-853.
The Medvedev lattice of computably closed sets.Sebastiaan A. Terwijn - 2006 - Archive for Mathematical Logic 45 (2):179-190.
On the Structure of the Medvedev Lattice.Sebastiaan A. Terwijn - 2008 - Journal of Symbolic Logic 73 (2):543 - 558.

Analytics

Added to PP
2015-05-08

Downloads
56 (#406,967)

6 months
8 (#432,306)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Modal logic.Alexander Chagrov - 1997 - New York: Oxford University Press. Edited by Michael Zakharyaschev.
Classical recursion theory: the theory of functions and sets of natural numbers.Piergiorgio Odifreddi - 1989 - New York, N.Y., USA: Sole distributors for the USA and Canada, Elsevier Science Pub. Co..
Adjointness in Foundations.F. William Lawvere - 1969 - Dialectica 23 (3‐4):281-296.
Semantical Investigations in Heyting's Intuitionistic Logic.Dov M. Gabbay - 1986 - Journal of Symbolic Logic 51 (3):824-824.
Distributive Lattices.Raymond Balbes & Philip Dwinger - 1977 - Journal of Symbolic Logic 42 (4):587-588.

View all 11 references / Add more references