Abstract
This paper is a continuation of the authors' attempts to deal with the notion of indistinguishability (or indiscernibility) from a logical point of view. Now we introduce a two-sorted first-order modal logic to enable us to deal with objects of two different species. The intended interpretation is that objects of one of the species obey the rules of standard S5, while the objects of the other species obey only the rules of a weaker notion of indiscernibility. Quantum mechanics motivates the development. The basic idea is that in the ‘actual’ world things may be indiscernible but in another accessible world they may be distinguished in some way. That is, indistinguishability needs not be seen as a necessary relation. Contrariwise, things might be distinguished in the ‘actual’ world, but they may be indiscernible in another world. So, while two quantum systems may be entangled in the actual world, in some accessible world, due to a measurement, they can be discerned, and on the other hand, two initially separated quantum systems may enter in a state of superposition, losing their individualities. Two semantics are sketched for our system. The first is constructed within a standard set theory (the ZFC system is assumed at the metamathematics). The second one is constructed within the theory of quasi-sets, which we believe suits better the purposes of our logic and the mathematical treatment of certain situations in quantum mechanics. Some further philosophically related topics are considered.