Quantum Black Holes as Solvents

Foundations of Physics 51 (2):1-13 (2021)
  Copy   BIBTEX

Abstract

Almost all of the entropy in the universe is in the form of Bekenstein–Hawking (BH) entropy of super-massive black holes. This entropy, if it satisfies Boltzmann’s equation S=logN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\log \mathcal{N}$$\end{document}, hence represents almost all the accessible phase space of the Universe, somehow associated to objects which themselves fill out a very small fraction of ordinary three-dimensional space. Although time scales are very long, it is believed that black holes will eventually evaporate by emitting Hawking radiation, which is thermal when counted mode by mode. A pure quantum state collapsing to a black hole will hence eventually re-emerge as a state with strictly positive entropy, which constitutes the famous black hole information paradox. Expanding on a remark by Hawking we posit that BH entropy is a thermodynamic entropy, which must be distinguished from information-theoretic entropy. The paradox can then be explained by information return in Hawking radiation. The novel perspective advanced here is that if BH entropy counts the number of accessible physical states in a quantum black hole, then the paradox can be seen as an instance of the fundamental problem of statistical mechanics. We suggest a specific analogy to the increase of the entropy in a solvation process. We further show that the huge phase volume (N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{N}$$\end{document}), which must be made available to the universe in a gravitational collapse, cannot originate from the entanglement between ordinary matter and/or radiation inside and outside the black hole. We argue that, instead, the quantum degrees of freedom of the gravitational field must get activated near the singularity, resulting in a final state of the ‘entangled entanglement’ form involving both matter and gravity.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,127

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.

Analytics

Added to PP
2021-04-25

Downloads
47 (#348,443)

6 months
34 (#104,348)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

Reductionism, Emergence and Levels of Reality: The Importance of Being Borderline.Sergio Chibbaro - 2014 - Cham: Imprint: Springer. Edited by Lamberto Rondoni & Angelo Vulpiani.
The Matter-Gravity Entanglement Hypothesis.Bernard S. Kay - 2018 - Foundations of Physics 48 (5):542-557.

Add more references