The number of Reidemeister Moves Needed for Unknotting

Abstract

There is a positive constant $c_1$ such that for any diagram $D$ representing the unknot, there is a sequence of at most $2^{c_1 n}$ Reidemeister moves that will convert it to a trivial knot diagram, $n$ is the number of crossings in $D$. A similar result holds for elementary moves on a polygonal knot $K$ embedded in the 1-skeleton of the interior of a compact, orientable, triangulated $PL$ 3-manifold $M$. There is a positive constant $c_2$ such that for each $t \geq 1$, if $M$ consists of $t$ tetrahedra, and $K$ is unknotted, then there is a sequence of at most $2^{c_2 t}$ elementary moves in $M$ which transforms $K$ to a triangle contained inside one tetrahedron of $M$. We obtain explicit values for $c_1$ and $c_2$.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,990

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2017-06-17

Downloads
4 (#1,645,937)

6 months
2 (#1,448,208)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references