Multiphoton fluorescence microscopy

Abstract

Multiphoton fluorescence microscopy has now become a relatively common tool among biophysicists and biologists. The intrinsic sectioning achievable by multiphoton excitation provides a simple means to excite a small volume inside cells and tissues. Multiphoton microscopes have a simplified optical path in the emission side due to the lack of an emission pinhole, which is necessary with normal confocal microscopes. This article illustrates examples in which this advantage in the simplified optics is exploited to achieve a new type of measurements. First, dual-emission wavelength measurements are used to identify regions of different phase domains in giant vesicles and to perform fluctuation experiments at specific locations in the membrane. Second, we show how dual-wavelength measurements are used in conjunction with scanning fluctuation analysis to measure the changes in the geometry of the domains and the incipient formation of gel domains when the temperature of the giant vesicles is gradually lowered. © 2001 Academic Press.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,423

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Analytics

Added to PP
2017-04-03

Downloads
0

6 months
0

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Author Profiles

Allegra Celli
università degli studi di genova
Nicholas Barry
Rice University

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references