Evolutionary Games in Natural, Social, and Virtual Worlds

Oxford University Press USA (2016)
  Copy   BIBTEX

Abstract

Over the last 25 years, evolutionary game theory has grown with theoretical contributions from the disciplines of mathematics, economics, computer science and biology. It is now ripe for applications. In this book, Daniel Friedman---an economist trained in mathematics---and Barry Sinervo---a biologist trained in mathematics---offer the first unified account of evolutionary game theory aimed at applied researchers. They show how to use a single set of tools to build useful models for three different worlds: the natural world studied by biologists; the social world studied by anthropologists, economists, political scientists and others; and the virtual world built by computer scientists and engineers. The first six chapters offer an accessible introduction to core concepts of evolutionary game theory. These include fitness, replicator dynamics, sexual dynamics, memes and genes, single and multiple population games, Nash equilibrium and evolutionarily stable states, noisy best response and other adaptive processes, the Price equation, and cellular automata. The material connects evolutionary game theory with classic population genetic models, and also with classical game theory. Notably, these chapters also show how to estimate payoff and choice parameters from the data. The last eight chapters present exemplary game theory applications. These include a new coevolutionary predator-prey learning model extending rock-paper-scissors; models that use human subject laboratory data to estimate learning dynamics; new approaches to plastic strategies and life cycle strategies, including estimates for male elephant seals; a comparison of machine learning techniques for preserving diversity to those seen in the natural world; analyses of congestion in traffic networks and the

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,745

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2015-12-15

Downloads
12 (#317,170)

6 months
9 (#1,260,759)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Daniel Friedman
Johns Hopkins University

Citations of this work

A Loophole of All ‘Loophole-Free’ Bell-Type Theorems.Marek Czachor - 2020 - Foundations of Science 25 (4):971-985.

Add more citations

References found in this work

No references found.

Add more references