Evolutionary dynamics of the continuous iterated prisoner's dilemma

Abstract

The iterated prisoner’s dilemma (IPD) has been widely used in the biological and social sciences to model dyadic cooperation. While most of this work has focused on the discrete prisoner’s dilemma, in which actors choose between cooperation and defection, there has been some analysis of the continuous IPD, in which actors can choose any level of cooperation from zero to one. Here, we analyse a model of the continuous IPD with a limited strategy set, and show that a generous strategy achieves the maximum possible payoff against its own type. While this strategy is stable in a neighborhood of the equilibrium point, the equilibrium point itself is always vulnerable to invasion by uncooperative strategies, and hence subject to eventual destabilization. The presence of noise or errors has no effect on this result. Instead, generosity is favored because of its role in increasing contributions to the most efficient level, rather than in counteracting the corrosiveness of noise. Computer simulation using a single-locus infinite alleles Gaussian mutation model suggest that outcomes ranging from a stable cooperative polymorphism to complete collapse of cooperation are possible depending on the magnitude of the mutational variance. Also, making the cost of helping a convex function of the amount of help provided makes it more difficult for cooperative strategies to invade a non-cooperative equilibrium, and for the cooperative equilibrium to resist destabilization by noncooperative strategies.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,423

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-01-28

Downloads
36 (#434,037)

6 months
1 (#1,516,429)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references