Logic Journal of the IGPL 20 (1):349-354 (2012)
Abstract |
It is shown that, relative to Bishop-style constructive mathematics, the boundedness principle BD-N is equivalent both to a general result about the convergence of double sequences and to a particular one about Cauchyness in a semi-metric space
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
DOI | 10.1093/jigpal/jzr045 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
No references found.
Citations of this work BETA
Principles Weaker Than BD-N.Robert S. Lubarsky & Hannes Diener - 2013 - Journal of Symbolic Logic 78 (3):873-885.
Similar books and articles
An Undecidable Property of Recurrent Double Sequences.Mihai Prunescu - 2008 - Notre Dame Journal of Formal Logic 49 (2):143-151.
Review: M. Adrian Carpentier, Creative Sequences and Double Sequences. [REVIEW]J. P. Cleave - 1970 - Journal of Symbolic Logic 35 (4):590-590.
Creative Sequences and Double Sequences.M. Adrian Carpentier - 1968 - Notre Dame Journal of Formal Logic 9 (1):35-61.
General Random Sequences and Learnable Sequences.C. P. Schnorr & P. Fuchs - 1977 - Journal of Symbolic Logic 42 (3):329-340.
Decidability and Specker Sequences in Intuitionistic Mathematics.Mohammad Ardeshir & Rasoul Ramezanian - 2009 - Mathematical Logic Quarterly 55 (6):637-648.
Sequences of Real Functions on [0, 1] in Constructive Reverse Mathematics.Hannes Diener & Iris Loeb - 2009 - Annals of Pure and Applied Logic 157 (1):50-61.
Relative Lawlessness in Intuitionistic Analysis.Joan Rand Moschovakis - 1987 - Journal of Symbolic Logic 52 (1):68-88.
On the Cauchy Completeness of the Constructive Cauchy Reals.Robert S. Lubarsky - 2007 - Mathematical Logic Quarterly 53 (4‐5):396-414.
More About Relatively Lawless Sequences.Joan Rand Moschovakis - 1994 - Journal of Symbolic Logic 59 (3):813-829.
Complete Enumerations and Double Sequences.M. Adrian Carpentier - 1969 - Mathematical Logic Quarterly 15 (1‐3):1-6.
Analytics
Added to PP index
2015-02-04
Total views
13 ( #772,900 of 2,520,893 )
Recent downloads (6 months)
1 ( #405,457 of 2,520,893 )
2015-02-04
Total views
13 ( #772,900 of 2,520,893 )
Recent downloads (6 months)
1 ( #405,457 of 2,520,893 )
How can I increase my downloads?
Downloads