Results for 'deamination'

4 found
Order:
  1. Production of mutants of Tobacco Mosaic Virus by chemical alteration of its nucleic acid in vitro.Alfred Gierer & K. W. Mundry - 1958 - Nature 182:1457-1458.
    The generation of viral mutants in vitro was demonstrated by treatment of the isolated RNA of Tobacco Mosaic Virus by nitrous acid. This agent causes deaminations converting cytosine into uracil, and adenine into hypoxanthine. Our assay for mutagenesis was the production of local lesions on a tobacco variety on which the untreated strain produces systemic infections only. A variety of different mutants are generated in this way. Quantitative analysis of the kinetics of mutagenesis leads to the conclusion that alteration of (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  2.  16
    How do ADARs bind RNA? New protein‐RNA structures illuminate substrate recognition by the RNA editing ADARs.Justin M. Thomas & Peter A. Beal - 2017 - Bioessays 39 (4):1600187.
    Deamination of adenosine in RNA to form inosine has wide ranging consequences on RNA function including amino acid substitution to give proteins not encoded in the genome. What determines which adenosines in an mRNA are subject to this modification reaction? The answer lies in an understanding of the mechanism and substrate recognition properties of adenosine deaminases that act on RNA (ADARs). Our recent publication of X‐ray crystal structures of the human ADAR2 deaminase domain bound to RNA editing substrates shed (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  18
    RNA editing: Exploring one mode with apolipoprotein B mRNA.Lawrence Chan - 1993 - Bioessays 15 (1):33-41.
    RNA editing is a newly described genetic phenomenon. It encompasses widely different molecular mechanisms and events. According to the specific RNA modification, RNA editing can be broadly classified into six major types. Type II RNA editing occurs in plants and mammals; it consists predominantly in cytidine to uridine conversions resulting from deamination/transamination or transglycosylation, although in plants other mechanisms have not been excluded. Apolipoprotein B mRNA editing is the only well‐documented editing phenomenon in mammals. It is an intranuclear event (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  4.  14
    Mismatch repair in mammalian cells.Louise A. Heywood & Julian F. Burke - 1990 - Bioessays 12 (10):473-477.
    A vital process in maintaining a low genetic error rate is the removal of mismatched bases in DNA. The importance of this process in E. coli is demonstrated by the 100–1000 fold increase in mutation frequency observed in cells deficient in this repair system(1). Mismatches can arise as a consequence of recombination, errors in replication and as a result of spontaneous chemical deamination, the latter process resulting in an estimated twelve T:G mismatches per genome per day in mammalian cells(2). (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark