Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data

Abstract

Scanning probe microscopy has facilitated many scientific discoveries utilizing its strengths of spatial resolution, non-destructive characterization and realistic in situ environments. However, accurate spatial data are required for quantitative applications but this is challenging for SPM especially when imaging at higher frame rates. We present a new operation mode for scanning probe microscopy that uses advanced image processing techniques to render accurate images based on position sensor data. This technique, which we call sensor inpainting, frees the scanner to no longer be at a specific location at a given time. This drastically reduces the engineering effort of position control and enables the use of scan waveforms that are better suited for the high inertia nanopositioners of SPM. While in raster scanning, typically only trace or retrace images are used for display, in Archimedean spiral scans 100% of the data can be displayed and at least a two-fold increase in temporal or spatial resolution is achieved. In the new mode, the grid size of the final generated image is an independent variable. Inpainting to a few times more pixels than the samples creates images that more accurately represent the ground truth. © 2013 IOP Publishing Ltd.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,867

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2017-05-12

Downloads
3 (#1,731,220)

6 months
1 (#1,721,226)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Alberto Bertozzi
Loyola University, Chicago

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references