# Bounds for the closure ordinals of essentially monotonic increasing functions

Journal of Symbolic Logic 58 (2):664-671 (1993)

# Abstract

Let $\Omega:= \aleph_1$ . For any $\alpha \Omega:\xi = \omega^\xi\}$ let EΩ (α) be the finite set of ε-numbers below Ω which are needed for the unique representation of α in Cantor-normal form using 0, Ω, +, and ω. Let $\alpha^\ast:= \max (E_\Omega(\alpha) \cup \{0\})$ . A function f: εΩ + 1 → Ω is called essentially increasing, if for any $\alpha < \varepsilon_{\Omega + 1}; f(\alpha) \geq \alpha^\ast: f$ is called essentially monotonic, if for any $\alpha,\beta < \varepsilon_{\Omega + 1}$; $\alpha \leq \beta \wedge \alpha^\ast \leq \beta^\ast \Rightarrow f(\alpha) \leq f(\beta).$ Let Clf(0) be the least set of ordinals which contains 0 as an element and which satisfies the following two conditions: (a) $\alpha,\beta \epsilon \mathrm{Cl}_f(0) \Rightarrow \omega^\alpha + \beta \epsilon \mathrm{Cl}_f(0)$ , (b) $E_\Omega\alpha \subseteq \mathrm{Cl}_f(0) \Rightarrow f(\alpha) \epsilon \mathrm{Cl}_f(0)$ . Let ϑεΩ + 1 be the Howard-Bachmann ordinal, which is, for example, defined in [3]. The following theorem is shown: If f:εΩ + 1 → Ω is essentially monotonic and essentially increasing, then the order type of Clf(0) is less than or equal to ϑεΩ + 1

## PhilArchive

Upload a copy of this work     Papers currently archived: 93,642

Setup an account with your affiliations in order to access resources via your University's proxy server

# Similar books and articles

Rekursion über Dilatoren und die Bachmann-Hierarchie.Peter Päppinghaus - 1989 - Archive for Mathematical Logic 28 (1):57-73.
An ordinal partition avoiding pentagrams.Jean A. Larson - 2000 - Journal of Symbolic Logic 65 (3):969-978.
Possible PCF algebras.Thomas Jech & Saharon Shelah - 1996 - Journal of Symbolic Logic 61 (1):313-317.
A set mapping with no infinite free subsets.P. Komjáth - 1991 - Journal of Symbolic Logic 56 (4):1400 - 1402.
Countable structures, Ehrenfeucht strategies, and wadge reductions.Tom Linton - 1991 - Journal of Symbolic Logic 56 (4):1325-1348.
An Ordinal Partition Avoiding Pentagrams.Jean Larson - 2000 - Journal of Symbolic Logic 65 (3):969-978.
Assigning an isomorphism type to a hyperdegree.Howard Becker - 2020 - Journal of Symbolic Logic 85 (1):325-337.
The amalgamation spectrum.John T. Baldwin, Alexei Kolesnikov & Saharon Shelah - 2009 - Journal of Symbolic Logic 74 (3):914-928.

2009-01-28