Bounds for the closure ordinals of essentially monotonic increasing functions

Journal of Symbolic Logic 58 (2):664-671 (1993)
  Copy   BIBTEX


Let $\Omega:= \aleph_1$ . For any $\alpha \Omega:\xi = \omega^\xi\}$ let EΩ (α) be the finite set of ε-numbers below Ω which are needed for the unique representation of α in Cantor-normal form using 0, Ω, +, and ω. Let $\alpha^\ast:= \max (E_\Omega(\alpha) \cup \{0\})$ . A function f: εΩ + 1 → Ω is called essentially increasing, if for any $\alpha < \varepsilon_{\Omega + 1}; f(\alpha) \geq \alpha^\ast: f$ is called essentially monotonic, if for any $\alpha,\beta < \varepsilon_{\Omega + 1}$; $\alpha \leq \beta \wedge \alpha^\ast \leq \beta^\ast \Rightarrow f(\alpha) \leq f(\beta).$ Let Clf(0) be the least set of ordinals which contains 0 as an element and which satisfies the following two conditions: (a) $\alpha,\beta \epsilon \mathrm{Cl}_f(0) \Rightarrow \omega^\alpha + \beta \epsilon \mathrm{Cl}_f(0)$ , (b) $E_\Omega\alpha \subseteq \mathrm{Cl}_f(0) \Rightarrow f(\alpha) \epsilon \mathrm{Cl}_f(0)$ . Let ϑεΩ + 1 be the Howard-Bachmann ordinal, which is, for example, defined in [3]. The following theorem is shown: If f:εΩ + 1 → Ω is essentially monotonic and essentially increasing, then the order type of Clf(0) is less than or equal to ϑεΩ + 1



    Upload a copy of this work     Papers currently archived: 93,642

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Rekursion über Dilatoren und die Bachmann-Hierarchie.Peter Päppinghaus - 1989 - Archive for Mathematical Logic 28 (1):57-73.
An ordinal partition avoiding pentagrams.Jean A. Larson - 2000 - Journal of Symbolic Logic 65 (3):969-978.
Possible PCF algebras.Thomas Jech & Saharon Shelah - 1996 - Journal of Symbolic Logic 61 (1):313-317.
A set mapping with no infinite free subsets.P. Komjáth - 1991 - Journal of Symbolic Logic 56 (4):1400 - 1402.
Countable structures, Ehrenfeucht strategies, and wadge reductions.Tom Linton - 1991 - Journal of Symbolic Logic 56 (4):1325-1348.
An Ordinal Partition Avoiding Pentagrams.Jean Larson - 2000 - Journal of Symbolic Logic 65 (3):969-978.
Assigning an isomorphism type to a hyperdegree.Howard Becker - 2020 - Journal of Symbolic Logic 85 (1):325-337.
The amalgamation spectrum.John T. Baldwin, Alexei Kolesnikov & Saharon Shelah - 2009 - Journal of Symbolic Logic 74 (3):914-928.


Added to PP

15 (#244,896)

6 months
45 (#342,028)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references