Journal of Symbolic Logic 57 (2):548-554 (1992)
Abstract |
We prove that a stable solvable group G which satisfies xn = 1 generically is of finite exponent dividing some power of n. Furthermore, G is nilpotent-by-finite. A second result is that in a stable group of finite exponent, involutions either have big centralisers, or invert a subgroup of finite index (which hence has to be abelian)
|
Keywords | No keywords specified (fix it) |
Categories | (categorize this paper) |
DOI | 10.2307/2275290 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
No references found.
Citations of this work BETA
Commutator Conditions and Splitting Automorphisms for Stable Groups.Frank O. Wagner - 1993 - Archive for Mathematical Logic 32 (3):223-228.
Similar books and articles
Sous-Groupes de Carter Dans Les Groupes de Rang de Morley Fini.Olivier Frécon - 2004 - Journal of Symbolic Logic 69 (1):23 - 33.
CM-Triviality and Stable Groups.Frank O. Wagner - 1998 - Journal of Symbolic Logic 63 (4):1473-1495.
Supersimple Ω-Categorical Groups and Theories.David M. Evans & Frank O. Wagner - 2000 - Journal of Symbolic Logic 65 (2):767-776.
Stable Groups, Mostly of Finite Exponent.Frank O. Wagner - 1993 - Notre Dame Journal of Formal Logic 34 (2):183-192.
Generalized Fitting Subgroup of a Group of Finite Morley Rank.Ali Nesin - 1991 - Journal of Symbolic Logic 56 (4):1391-1399.
Stability of Nilpotent Groups of Class 2 and Prime Exponent.Alan H. Mekler - 1981 - Journal of Symbolic Logic 46 (4):781-788.
Quasi-Endomorphisms in Small Stable Groups.Frank O. Wagner - 1993 - Journal of Symbolic Logic 58 (3):1044-1051.
Bad Groups of Finite Morley Rank.Luis Jaime Corredor - 1989 - Journal of Symbolic Logic 54 (3):768-773.
Équations Génériques Dans Un Groupe Stable Nilpotent.Khaled Jaber - 1999 - Journal of Symbolic Logic 64 (2):761-768.
Analytics
Added to PP index
2009-01-28
Total views
9 ( #954,674 of 2,519,631 )
Recent downloads (6 months)
1 ( #406,756 of 2,519,631 )
2009-01-28
Total views
9 ( #954,674 of 2,519,631 )
Recent downloads (6 months)
1 ( #406,756 of 2,519,631 )
How can I increase my downloads?
Downloads