Deciphering the physiological blueprint of a bacterial cell

Bioessays 32 (6):461-467 (2010)
  Copy   BIBTEX

Abstract

During the last few months, several pioneer genome‐wide transcriptomic, proteomic and metabolomic studies have revolutionised the understanding of bacterial biological processes, leading to a picture that resembles eukaryotic complexity. Technological advances such as next‐generation high‐throughput sequencing and high‐density oligonucleotide microarrays have allowed the determination, in several bacteria, of the entire boundaries of all expressed transcripts. Consequently, novel RNA‐mediated regulatory mechanisms have been discovered including multifunctional RNAs. Moreover, resolution of bacterial proteome organisation (interactome) and global protein localisation (localizome) have unveiled an unanticipated complexity that highlights the significance of protein multifunctionality and localisation in the cell. Also, analysis of a complete bacterial metabolic network has again revealed a high fraction of multifunctional enzymes and an unexpectedly high level of metabolic responses and adaptation. Altogether, these novel approaches have permitted the deciphering of the entire physiological landscape of one of the smallest bacteria, Mycoplasma pneumoniae. Here, we summarise and discuss recent findings aimed at defining the blueprint of any prokaryote.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,897

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2013-12-18

Downloads
20 (#767,589)

6 months
11 (#237,895)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references