Introduction to sequence learning

Sequential behavior is essential to intelligence, and it is a fundamental part of human activities ranging from reasoning to language, and from everyday skills to complex problem solving. In particular, sequence learning is an important component of learning in many task domains — planning, reasoning, robotics, natural language processing, speech recognition, adaptive control, time series prediction, financial engineering, DNA sequencing, and so on. Naturally, there are many different approaches towards sequence learning, resulting from different perspectives taken in different task domains. These approaches deal with somewhat differently formulated sequential learning problems (for example, some with actions and some without), and/ or different aspects of sequence learning (for example, sequence prediction vs. sequence recognition). Sequence learning is clearly a difiicult task. More powerful algorithms for sequence learning are needed in all of these afore-mentioned domains. It is our view that the right approach to develop better techniques, algorithms, models.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Translate to english
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 72,564
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views
24 ( #478,276 of 2,533,568 )

Recent downloads (6 months)
1 ( #390,861 of 2,533,568 )

How can I increase my downloads?


My notes