The relational blockworld interpretation of non-relativistic quantum mechanics

Abstract

We introduce a new interpretation of non-relativistic quantum mechanics (QM) called Relational Blockworld (RBW). We motivate the interpretation by outlining two results due to Kaiser, Bohr, Ulfeck, Mottelson, and Anandan, independently. First, the canonical commutation relations for position and momentum can be obtained from boost and translation operators,respectively, in a spacetime where the relativity of simultaneity holds. Second, the QM density operator can be obtained from the spacetime symmetry group of the experimental configuration exclusively. We show how QM, obtained from relativistic quantum field theory per RBW, explains the twin-slit experiment and conclude by resolving the standard conceptual problems of QM, i.e., the measurement problem, entanglement and non-locality.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,881

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-01-28

Downloads
139 (#133,383)

6 months
17 (#148,398)

Historical graph of downloads
How can I increase my downloads?

Author Profiles

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references