In Claus Beisbart & Stephan Hartmann,
Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 263 (
2011)
Copy
BIBTEX
Abstract
Philosophical accounts of quantum theory commonly suppose that the observables of a quantum system form a Type-I factor von Neumann algebra. Such algebras always have atoms, which are minimal projection operators in the case of quantum mechanics. However, relativistic quantum field theory and the thermodynamic limit of quantum statistical mechanics make extensive use of von Neumann algebras of more general types. This chapter addresses the question whether interpretations of quantum probability devised in the usual manner continue to apply in the more general setting. Features of non-type I factor von Neumann algebras are cataloged. It is shown that these novel features do not cause the familiar formalism of quantum probability to falter, since Gleason's Theorem and the Lüders Rule can be generalized. However, the features render the problem of the interpretation of quantum probability more intricate.