Every Sierpiński set is strongly meager

Archive for Mathematical Logic 35 (5-6):281-285 (1996)

Abstract

This article has no associated abstract. (fix it)

Download options

PhilArchive



    Upload a copy of this work     Papers currently archived: 72,805

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-23

Downloads
12 (#816,550)

6 months
1 (#386,031)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Hypothèse du Continu.[author unknown] - 1959 - British Journal for the Philosophy of Science 10 (39):249-250.

Add more references

Citations of this work

Strongly Meager Sets Do Not Form an Ideal.Tomek Bartoszynski & Saharon Shelah - 2001 - Journal of Mathematical Logic 1 (1):1-34.
Countably Perfectly Meager Sets.Roman Pol & Piotr Zakrzewski - 2021 - Journal of Symbolic Logic 86 (3):1214-1227.

Add more citations

Similar books and articles

Strongly Meager Sets of Size Continuum.Tomek Bartoszynski & Saharon Shelah - 2003 - Archive for Mathematical Logic 42 (8):769-779.
Strongly Meager and Strong Measure Zero Sets.Tomek Bartoszyński & Saharon Shelah - 2002 - Archive for Mathematical Logic 41 (3):245-250.
Two Stars.Janusz Pawlikowski & Marcin Sabok - 2008 - Archive for Mathematical Logic 47 (7-8):673-676.
Extending Baire Property by Uncountably Many Sets.Paweł Kawa & Janusz Pawlikowski - 2010 - Journal of Symbolic Logic 75 (3):896-904.
Was Sierpinski Right? IV.Saharon Shelah - 2000 - Journal of Symbolic Logic 65 (3):1031-1054.
Lusin-Sierpinski Index for the Internal Sets.Boško Živaljević - 1992 - Journal of Symbolic Logic 57 (1):172 - 178.
States on the Sierpinski Triangle.J. C. Kimball - 1998 - Foundations of Physics 28 (1):87-105.
Inscribing Nonmeasurable Sets.Szymon Żeberski - 2011 - Archive for Mathematical Logic 50 (3-4):423-430.