History of the Lenz–Ising model 1965–1971: the role of a simple model in understanding critical phenomena

Archive for History of Exact Sciences 65 (6):625-658 (2011)
  Copy   BIBTEX

Abstract

This is the last in a series of three papers on the history of the Lenz–Ising model from 1920 to the early 1970s. In the first paper, I studied the invention of the model in the 1920s, while in the second paper, I documented a quite sudden change in the perception of the model in the early 1960s when it was realized that the Lenz–Ising model is actually relevant for the understanding of phase transitions. In this article, which is self-contained, I study how this realization affected attempts to understand critical phenomena, which can be understood as limiting cases of (first-order) phase transitions, in the epoch from circa 1965 to 1970, where these phenomena were recognized as a research field in its own right. I focus on two questions: What kinds of insight into critical phenomena was the employment of the Lenz–Ising model thought to give? And how could a crude model, which the Lenz–Ising model was thought to be, provide this understanding? I document that the model played several roles: At first, it played a role analogous to experimental data: hypotheses about real systems, in particular relations between critical exponents and what is now called the hypothesis of scaling, which was advanced by Benjamin Widom and others, were confronted with numerical results for the model, in particular the model’s so-called critical exponents. A positive result of a confrontation was seen as positive evidence for this hypothesis. The model was also used to gain insight into specific aspects of critical phenomena, for example that diverse physical systems exhibit similar behavior close to a critical point. Later, a more systematic program of understanding critical phenomena emerged that involved an explicit formulation of what it means to understand critical phenomena, namely, the elucidation of what features of the Hamiltonian of models lead to what kinds of behavior close to critical points. Attempts to accomplish this program culminated with the so-called hypothesis of universality, put forward independently by Robert B. Griffiths and Leo P. Kadanoff in 1970. They divided critical phenomena into classes with similar critical behavior. I also study the crucial role of the Lenz–Ising model in the development and justification of these ideas.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,990

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

History of the Lenz–Ising Model 1950–1965: from irrelevance to relevance.Martin Niss - 2008 - Archive for History of Exact Sciences 63 (3):243-287.
Idealizations and Analogies: Explaining Critical Phenomena.Quentin Rodriguez - 2021 - Studies in History and Philosophy of Science Part A 89 (C):235-247.
The Ehrenfest Classification of Phase Transitions: Introduction and Evolution.Gregg Jaeger - 1998 - Archive for History of Exact Sciences 53 (1):51-81.
When scientific models represent.Daniela M. Bailer-Jones - 2003 - International Studies in the Philosophy of Science 17 (1):59 – 74.
Stages in the development of a model organism as a platform for mechanistic models in developmental biology: Zebrafish, 1970–2000.Robert Meunier - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (2):522-531.

Analytics

Added to PP
2020-02-03

Downloads
18 (#828,363)

6 months
6 (#700,872)

Historical graph of downloads
How can I increase my downloads?

References found in this work

Asymptotics and the role of minimal models.Robert W. Batterman - 2002 - British Journal for the Philosophy of Science 53 (1):21-38.
Introduction.Mitchell Green & John N. Williams - 2007 - In Mitchell S. Green & John N. Williams (eds.), Moore’s Paradox: New Essays on Belief, Rationality, and the First Person. Oxford, England: Oxford University Press.
Complex Systems, Modelling and Simulation.Sam Schweber & Matthias Wächter - 2000 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31 (4):583-609.

View all 7 references / Add more references