Relational theories of euclidean space and Minkowski spacetime

Philosophy of Science 50 (2):205-226 (1983)
  Copy   BIBTEX


We here present explicit relational theories of a class of geometrical systems (namely, inner product spaces) which includes Euclidean space and Minkowski spacetime. Using an embedding approach suggested by the theory of measurement, we prove formally that our theories express the entire empirical content of the corresponding geometric theory in terms of empirical relations among a finite set of elements (idealized point-particles or events) thought of as embedded in the space. This result is of interest within the general phenomenalist tradition as well as the theory of space and time, since it seems to be the first example of an explicit phenomenalist reconstruction of a realist theory which is provably equivalent to it in observational consequences. The interesting paper "On the Space-Time Ontology of Physical Theories" by Ken Manders, Philosophy of Science, vol. 49, number 4, December 1982, p. 575-590, has significant affinities to this one. We both, in a sense, try to formally vindicate Leibniz's notion of a relational theory of space, by constructing theories of spatial relations among physical objects which are provably equivalent to the standard absolutist theories. The essential difference between our approaches is that Manders retains Leibniz's explicitly modal framework, whereas I do not. Manders constructs a spacetime theory which explicitly characterizes the totality of possible configurations of physical objects, using a modal language in which the notion of a possible configuration occurs as a primitive. There is no doubt that this is a more accurate realization of Leibniz's own conception of space than the embedding-based approach developed here. However, it also remains open to objections (such as those cited here from Sklar) on account of the special appeal to modal notions. Our approach here, by contrast, aims to avoid the special appeal to modal notions by giving directly a set of laws which are satisfied by a configuration individually, if and only if it is one of the allowable ones. One thus avoids the need for reference to possible but not actual configurations or objects, in the statement of the spacetime laws. We may then take this alternative set of laws as the actual geometric theory, and do away with the hypothetical entity called 'space'. Yet at the same time there is no invocation of modality, except in the ordinary sense in which every physical theory constrains what is possible. So that a relationalist is not forced to utilize a modal language (though Leibniz certainly does.)



    Upload a copy of this work     Papers currently archived: 91,202

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Space, Time and Natural Kinds.Scott Mann - 2006 - Journal of Critical Realism 5 (2):290-322.
Space and time in particle and field physics.Dennis Dieks - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (2):217-241.
What Makes Time Special?Craig Callender - 2017 - Oxford: Oxford University Press.
Absolute versus relational spacetime: For better or worse, the debate goes on.Carl Hoefer - 1998 - British Journal for the Philosophy of Science 49 (3):451-467.
On the space-time ontology of physical theories.Kenneth L. Manders - 1982 - Philosophy of Science 49 (4):575-590.


Added to PP

299 (#64,487)

6 months
16 (#138,396)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Locations.John Hawthorne & Theodore Sider - 2002 - Philosophical Topics 30 (1):53-76.
Substantivalism, Relationism, and Structural Spacetime Realism.Mauro Dorato - 2000 - Foundations of Physics 30 (10):1605-1628.
A new approach to the relational‐substantival debate.Jill North - 2018 - Oxford Studies in Metaphysics 11:3-43.

View all 21 citations / Add more citations

References found in this work

Space, time, and spacetime.L. Sklar - 1976 - Revue Philosophique de la France Et de l'Etranger 172 (3):545-555.
The Shape of Space.Graham Nerlich - 1978 - Mind 87 (347):450-452.

Add more references