Reciprocal Relativity of Noninertial Frames and the Quaplectic Group

Foundations of Physics 36 (7):1036-1069 (2006)
  Copy   BIBTEX

Abstract

The frame associated with a classical point particle is generally noninertial. The point particle may have a nonzero velocity and force with respect to an absolute inertial rest frame. In time–position–energy–momentum-space {t, q, p, e}, the group of transformations between these frames leaves invariant the symplectic metric and the classical line element ds2 = d t2. Special relativity transforms between inertial frames for which the rate of change of momentum is negligible and eliminates the absolute rest frame by making velocities relative but still requires the absolute inertial frame. The Lorentz group leaves invariant the symplectic metric and the line elements $ds^{2} = -dt^{2} + \frac{1}{c^{2}} dq^{2}$ and $d \mu^{2} = dp^{2}-\frac{1}{c^{2}}de^{2}$ . General relativity for particles under only the influence of gravity avoids the issue of noninertial frames as all particles follow geodesics and hence have locally inertial frames. For other forces, the question of the absolute inertial frame remains.) Born conjectured that the line element should be generalized to the pseudo-orthogonal metric $ds^{2} = -d t^{2}+\frac{1}{c^{2}} dq^{2} + \frac{1}{b^{2}}(dp^{2}-\frac{1}{c^{2}}de^{2})$ . The group leaving this metrics and the symplectic metric invariant is the pseudo-unitary group of transformations between noninertial frames. We show that these transformations also eliminate the need for an absolute inertial frame by making forces relative and bounded by b and so embodies a relativity that is shape reciprocal in the sense of Born. The inhomogeneous version of this group is naturally the semidirect product of the pseudo-unitary group with the nonabelian Heisenberg group. This is the quaplectic group

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,592

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

R×S 3 special theory of relativity.M. Carmeli - 1985 - Foundations of Physics 15 (12):1263-1273.
Another look at general covariance and the equivalence of reference frames.Dennis Dieks - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (1):174-191.

Analytics

Added to PP
2013-11-22

Downloads
62 (#258,501)

6 months
9 (#300,363)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references