A remark on hereditarily nonparadoxical sets

Archive for Mathematical Logic 55 (1-2):165-175 (2016)
  Copy   BIBTEX

Abstract

Call a set A⊆R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A \subseteq \mathbb {R}}$$\end{document}paradoxical if there are disjoint A0,A1⊆A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_0, A_1 \subseteq A}$$\end{document} such that both A0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_0}$$\end{document} and A1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_1}$$\end{document} are equidecomposable with A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A}$$\end{document} via countabbly many translations. X⊆R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \subseteq \mathbb {R}}$$\end{document} is hereditarily nonparadoxical if no uncountable subset of X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X}$$\end{document} is paradoxical. Penconek raised the question if every hereditarily nonparadoxical set X⊆R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \subseteq \mathbb {R}}$$\end{document} is the union of countably many sets, each omitting nontrivial solutions of x-y=z-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x - y = z - t}$$\end{document}. Nowik showed that the answer is ‘yes’, as long as |X|≤ℵω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|X| \leq \aleph_\omega}$$\end{document}. Here we show that consistently there exists a counterexample of cardinality ℵω+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_{\omega+1}}$$\end{document} and it is also consistent that the continuum is arbitrarily large and Penconek’s statement holds for any X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X}$$\end{document}.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,752

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

On hereditarily countable sets.Thomas Jech - 1982 - Journal of Symbolic Logic 47 (1):43-47.
A hierarchy of hereditarily finite sets.Laurence Kirby - 2008 - Archive for Mathematical Logic 47 (2):143-157.
Finitary Set Theory.Laurence Kirby - 2009 - Notre Dame Journal of Formal Logic 50 (3):227-244.
Choices of Convenient Sets.Antonín Sochor - 1994 - Mathematical Logic Quarterly 40 (1):51-60.
Decidability of ∃*∀∀-sentences in HF.D. Bellè & F. Parlamento - 2008 - Notre Dame Journal of Formal Logic 49 (1):55-64.
Finiteness Axioms on Fragments of Intuitionistic Set Theory.Riccardo Camerlo - 2007 - Notre Dame Journal of Formal Logic 48 (4):473-488.
On hereditarily small sets in ZF.M. Randall Holmes - 2014 - Mathematical Logic Quarterly 60 (3):228-229.
Induction and foundation in the theory of hereditarily finite sets.Flavio Previale - 1994 - Archive for Mathematical Logic 33 (3):213-241.
Hereditarily finite finsler sets.David Booth - 1990 - Journal of Symbolic Logic 55 (2):700-706.
Substandard models of finite set theory.Laurence Kirby - 2010 - Mathematical Logic Quarterly 56 (6):631-642.
Hereditarily structurally complete modal logics.V. V. Rybakov - 1995 - Journal of Symbolic Logic 60 (1):266-288.

Analytics

Added to PP
2015-12-24

Downloads
7 (#1,382,898)

6 months
3 (#965,065)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references