PHI321 Spacetime problems

Abstract

1. A particle moves back and forth along a line, increasing in speed. Graph. 2. How many equivalence classes in Galilean spacetime are there for a particle that is at rest? A particle that is moving at a constant speed? Why are the previous two questions trick questions? 3. In Galilean spacetime, there is no such thing as absolute velocity. Is there such a thing as absolute acceleration? If not, why not? If so, describe a spacetime in which there is no notion of absolute acceleration. Hint: to move from Aristotelian spacetime to Galilean spacetime, we got rid of the notion of absolute velocity by counting two graphs as equivalent if they differed by a shear transformation. Perhaps we can get rid of absolute acceleration with an analogous move? 4. Draw a two-dimensional Cartesian grid. Label the axes x and t, and mark a scale on these axes. Make the x axis the horizontal axis, and the t axis the vertical one. Pick two points that are not on the same vertical line. Name them Ann and Bob. Label each point with its x and t coordinates

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,642

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2010-12-22

Downloads
5 (#847,061)

6 months
265 (#78,378)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references