An algorithmic information theory challenge to intelligent design

Zygon 49 (1):42-65 (2014)
  Copy   BIBTEX

Abstract

William Dembski claims to have established a decision process to determine when highly unlikely events observed in the natural world are due to Intelligent Design. This article argues that, as no implementable randomness test is superior to a universal Martin-Löf test, this test should be used to replace Dembski's decision process. Furthermore, Dembski's decision process is flawed, as natural explanations are eliminated before chance. Dembski also introduces a fourth law of thermodynamics, his “law of conservation of information,” to argue that information cannot increase by natural processes. However, this article, using algorithmic information theory, shows that this law is no more than the second law of thermodynamics. The article concludes that any discussions on the possibilities of design interventions in nature should be articulated in terms of the algorithmic information theory approach to randomness and its robust decision process

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,783

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2014-02-24

Downloads
83 (#202,176)

6 months
13 (#192,902)

Historical graph of downloads
How can I increase my downloads?