Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration

Abstract

A frequency-domain photon migration technique is developed for quantitative measurement of the absorption and reduced scattering coefficients of highly turbid samples in a small-volume reflective cuvette. We present both an analytical model for the FDPM cuvette and its experimental verification, using calibrated phantoms and suspensions of living cells. FDPM model fits to experimental data demonstrate that the reduced scattering and absorption. For highly reflective wall boundaries, PDW confinement leads to substantial enhancement in both amplitude and phase compared with identical samples in infinite media. Results from experiments on microsphere suspensions are compared with predictions from Mie theory to assess the potential of this method to interpret scattering properties in terms of scatterer size and density. Optical property measurements of biological cell suspensions are reported, and the possibility of optically monitoring cell physiology in a carefully controlled environment is demonstrated. © 2001 Optical Society of America.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,283

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Analytics

Added to PP
2017-04-22

Downloads
2 (#1,808,473)

6 months
2 (#1,206,195)

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references