Extended Scale Relativity, p-Loop Harmonic Oscillator, and Logarithmic Corrections to the Black Hole Entropy

Foundations of Physics 33 (3):445-466 (2003)
  Copy   BIBTEX

Abstract

An extended scale relativity theory, actively developed by one of the authors, incorporates Nottale's scale relativity principle where the Planck scale is the minimum impassible invariant scale in Nature, and the use of polyvector-valued coordinates in C-spaces (Clifford manifolds) where all lengths, areas, volumes⋅ are treated on equal footing. We study the generalization of the ordinary point-particle quantum mechanical oscillator to the p-loop (a closed p-brane) case in C-spaces. Its solution exhibits some novel features: an emergence of two explicit scales delineating the asymptotic regimes (Planck scale region and a smooth region of a quantum point oscillator). In the most interesting Planck scale regime, the solution recovers in an elementary fashion some basic relations of string theory (including string tension quantization and string uncertainty relation). It is shown that the degeneracy of the first collective excited state of the p-loop oscillator yields not only the well-known Bekenstein–Hawking area-entropy linear relation but also the logarithmic corrections therein. In addition we obtain for any number of dimensions the Hawking temperature, the Schwarschild radius, and the inequalities governing the area of a black hole formed in a fusion of two black holes. One of the interesting results is a demonstration that the evaporation of a black hole is limited by the upper bound on its temperature, the Planck temperature

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,867

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2013-11-22

Downloads
63 (#249,817)

6 months
2 (#1,445,852)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Add more references