Constructing Extremal Compatible Quantum Observables by Means of Two Mutually Unbiased Bases

Foundations of Physics 49 (6):532-548 (2019)
  Copy   BIBTEX

Abstract

We describe a particular class of pairs of quantum observables which are extremal in the convex set of all pairs of compatible quantum observables. The pairs in this class are constructed as uniformly noisy versions of two mutually unbiased bases with possibly different noise intensities affecting each basis. We show that not all pairs of MUB can be used in this construction, and we provide a criterion for determining those MUB that actually do yield extremal compatible observables. We apply our criterion to all pairs of Fourier conjugate MUB, and we prove that in this case extremality is achieved if and only if the quantum system Hilbert space is odd-dimensional. Remarkably, this fact is no longer true for general non-Fourier conjugate MUB, as we show in an example. Therefore, the presence or the absence of extremality is a concrete geometric manifestation of MUB inequivalence, that already materializes by comparing sets of no more than two bases at a time.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 93,296

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2019-06-06

Downloads
28 (#589,033)

6 months
9 (#355,374)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

Quantum Measurement.Paul Busch - 2016 - Cham: Imprint: Springer. Edited by Pekka Lahti, Juha-Pekka Pellonpää & Kari Ylinen.

Add more references