Switch to: References

Citations of:

Tacit knowledge and mathematical progress

In Emily Grosholz & Herbert Breger (eds.), The growth of mathematical knowledge. Boston: Kluwer Academic Publishers. pp. 221--230 (2000)

Add citations

You must login to add citations.
  1. Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • Confronting Ideals of Proof with the Ways of Proving of the Research Mathematician.Norma B. Goethe & Michèle Friend - 2010 - Studia Logica 96 (2):273-288.
    In this paper, we discuss the prevailing view amongst philosophers and many mathematicians concerning mathematical proof. Following Cellucci, we call the prevailing view the “axiomatic conception” of proof. The conception includes the ideas that: a proof is finite, it proceeds from axioms and it is the final word on the matter of the conclusion. This received view can be traced back to Frege, Hilbert and Gentzen, amongst others, and is prevalent in both mathematical text books and logic text books.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mathematics as the art of abstraction.Richard L. Epstein - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Springer. pp. 257--289.
  • Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark