Results for 'Quantum-state space'

999 found
Order:
  1. A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  2.  30
    Physical uniformities on the state space of nonrelativisitic quantum mechanics.Reinhard Werner - 1983 - Foundations of Physics 13 (8):859-881.
    Uniformities describing the distinguishability of states and of observables are discussed in the context of general statistical theories and are shown to be related to distinguished subspaces of continuous observables and states, respectively. The usual formalism of quantum mechanics contains no such physical uniformity for states. Using recently developed tools of quantum harmonic analysis, a natural one-to-one correspondence between continuous subspaces of nonrelativistic quantum and classical mechanics is established, thus exhibiting a close interrelation between physical uniformities for (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Quantum States of a Time-Asymmetric Universe: Wave Function, Density Matrix, and Empirical Equivalence.Eddy Keming Chen - 2019 - Dissertation, Rutgers University - New Brunswick
    What is the quantum state of the universe? Although there have been several interesting suggestions, the question remains open. In this paper, I consider a natural choice for the universal quantum state arising from the Past Hypothesis, a boundary condition that accounts for the time-asymmetry of the universe. The natural choice is given not by a wave function but by a density matrix. I begin by classifying quantum theories into two types: theories with a fundamental (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  4.  26
    Quantum states: an analysis via the orthogonality relation.Shengyang Zhong - 2021 - Synthese 199 (5-6):15015-15042.
    From the Hilbert space formalism we note that five simple conditions are satisfied by the orthogonality relation between the (pure) states of a quantum system. We argue, by proving a mathematical theorem, that they capture the essentials of this relation. Based on this, we investigate the rationale behind these conditions in the form of six physical hypotheses. Along the way, we reveal an implicit theoretical assumption in theories of physics and prove a theorem which formalizes the idea that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Properties of QBist State Spaces.D. M. Appleby, Åsa Ericsson & Christopher A. Fuchs - 2011 - Foundations of Physics 41 (3):564-579.
    Every quantum state can be represented as a probability distribution over the outcomes of an informationally complete measurement. But not all probability distributions correspond to quantum states. Quantum state space may thus be thought of as a restricted subset of all potentially available probabilities. A recent publication (Fuchs and Schack, arXiv:0906.2187v1, 2009) advocates such a representation using symmetric informationally complete (SIC) measurements. Building upon this work we study how this subset—quantum-state space—might (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  6.  50
    Random quantum states.William K. Wootters - 1990 - Foundations of Physics 20 (11):1365-1378.
    This paper examines the statistical properties of random quantum states, for four different kinds of random state:(1) a pure state chosen at random with respect to the uniform measure on the unit sphere in a finite-dimensional Hilbert space;(2) a random pure state in a real space;(3) a pure state chosen at random except that a certain expectation value is fixed;(4) a random mixed state with fixed eigenvalues. For the first two of these, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7.  35
    Torsion Fields, Cartan–Weyl Space–Time and State-Space Quantum Geometries, their Brownian Motions, and the Time Variables.Diego L. Rapoport - 2007 - Foundations of Physics 37 (4-5):813-854.
    We review the relation between spacetime geometries with trace-torsion fields, the so-called Riemann–Cartan–Weyl (RCW) geometries, and their associated Brownian motions. In this setting, the drift vector field is the metric conjugate of the trace-torsion one-form, and the laplacian defined by the RCW connection is the differential generator of the Brownian motions. We extend this to the state-space of non-relativistic quantum mechanics and discuss the relation between a non-canonical quantum RCW geometry in state-space associated with (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  8.  15
    Representation of Quantum States as Points in a Probability Simplex Associated to a SIC-POVM.José Ignacio Rosado - 2011 - Foundations of Physics 41 (7):1200-1213.
    The quantum state of a d-dimensional system can be represented by a probability distribution over the d 2 outcomes of a Symmetric Informationally Complete Positive Operator Valued Measure (SIC-POVM), and then this probability distribution can be represented by a vector of $\mathbb {R}^{d^{2}-1}$ in a (d 2−1)-dimensional simplex, we will call this set of vectors $\mathcal{Q}$ . Other way of represent a d-dimensional system is by the corresponding Bloch vector also in $\mathbb {R}^{d^{2}-1}$ , we will call this (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  9. Measurements and quantum states: Part I.Henry Margenau - 1963 - Philosophy of Science 30 (1):1-16.
    Although there is a complete consensus among working physicists with respect to the practical and operational meanings of quantum states, and also a rather loosely formulated general philosophic view called the Copenhagen interpretation, a great deal of confusion and divergence of opinions exist as to the details of the measurement process and its effects upon quantum states. This paper reviews the current expositions of the measurement problem, limiting itself for lack of space primarily to the writings of (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  10.  17
    Normalized Observational Probabilities from Unnormalizable Quantum States or Phase-Space Distributions.Don N. Page - 2018 - Foundations of Physics 48 (7):827-836.
    Often it is assumed that a quantum state or a phase-space distribution must be normalizable. Here it is shown that even if it is not normalizable, one may be able to extract normalized observational probabilities from it.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  11.  40
    The geometry of state space.M. Adelman, J. V. Corbett & C. A. Hurst - 1993 - Foundations of Physics 23 (2):211-223.
    The geometry of the state space of a finite-dimensional quantum mechanical system, with particular reference to four dimensions, is studied. Many novel features, not evident in the two-dimensional space of a single spin, are found. Although the state space is a convex set, it is not a ball, and its boundary contains mixed states in addition to the pure states, which form a low-dimensional submanifold. The appropriate language to describe the role of the observer (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  13.  20
    State space as projective space. The case of massless particles.Luis J. Boya - 1989 - Foundations of Physics 19 (11):1363-1370.
    The fact that the space of states of a quantum mechanical system is a projective space (as opposed to a linear manifold) has many consequences. We develop some of these here. First, the space is nearly contractible, namely all the finite homotopy groups (except the second) vanish (i.e., it is the Eilenberg-MacLane space K(ℤ, 2)). Moreover, there is strictly speaking no “superposition principle” in quantum mechanics as one cannot “add” rays; instead, there is adecomposition (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Einstein, Incompleteness, and the Epistemic View of Quantum States.Nicholas Harrigan & Robert W. Spekkens - 2010 - Foundations of Physics 40 (2):125-157.
    Does the quantum state represent reality or our knowledge of reality? In making this distinction precise, we are led to a novel classification of hidden variable models of quantum theory. We show that representatives of each class can be found among existing constructions for two-dimensional Hilbert spaces. Our approach also provides a fruitful new perspective on arguments for the nonlocality and incompleteness of quantum theory. Specifically, we show that for models wherein the quantum state (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   78 citations  
  15.  58
    Measurement of quantum states and the Wigner function.Antoine Royer - 1989 - Foundations of Physics 19 (1):3-32.
    In quantum mechanics, the state of an individual particle (or system) is unobservable, i.e., it cannot be determined experimentally, even in principle. However, the notion of “measuring a state” is meaningful if it refers to anensemble of similarly prepared particles, i.e., the question may be addressed: Is it possible to determine experimentally the state operator (density matrix) into which a given preparation procedure puts particles. After reviewing the previous work on this problem, we give simple procedures, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  37
    Geometry and Structure of Quantum Phase Space.Hoshang Heydari - 2015 - Foundations of Physics 45 (7):851-857.
    The application of geometry to physics has provided us with new insightful information about many physical theories such as classical mechanics, general relativity, and quantum geometry. The geometry also plays an important role in foundations of quantum mechanics and quantum information. In this work we discuss a geometric framework for mixed quantum states represented by density matrices, where the quantum phase space of density matrices is equipped with a symplectic structure, an almost complex structure, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  17.  28
    Quantum States of Indefinite Spins: From Baryons to Massive Gravitino. [REVIEW]M. Kirchbach - 2003 - Foundations of Physics 33 (5):781-812.
    One of the long-standing problems in particle physics is the covariant description of higher spin states. The standard formalism is based upon totally symmetric Lorentz invariant tensors of rank-K with Dirac spinor components, $\psi _{\mu _1 \cdots \mu _K } $ , which satisfy the Dirac equation for each space time index. In addition, one requires $\partial ^{\mu _1 } \psi _{\mu _1 \cdots \mu _K } = 0{\text{ }}and{\text{ }}\gamma ^{\mu _1 } \psi _{\mu _1 \cdots \mu _K (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  18.  19
    The geometry of the state space.Hans R. Fischer & G. T. Rüttimann - 1978 - In A. R. Marlow (ed.), Mathematical foundations of quantum theory. New York: Academic Press. pp. 153--176.
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  19. A topos perspective on the kochen-Specker theorem: I. Quantum states as generalised valuations.Chris Isham & Jeremy Butterfield - unknown
    Any attempt to construct a realist interpretation of quantum theory founders on the Kochen-Specker theorem, which asserts the impossibility of assigning values to quantum quantities in a way that preserves functional relations between them. We construct a new type of valuation which is defined on all operators, and which respects an appropriate version of the functional composition principle. The truth-values assigned to propositions are (i) contextual; and (ii) multi-valued, where the space of contexts and the multi-valued logic (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  20.  6
    Quantum and Relativistic Corrections to Maxwell–Boltzmann Ideal Gas Model from a Quantum Phase Space Approach.Rivo Herivola Manjakamanana Ravelonjato, Ravo Tokiniaina Ranaivoson, Raoelina Andriambololona, Roland Raboanary, Hanitriarivo Rakotoson & Naivo Rabesiranana - 2023 - Foundations of Physics 53 (5):1-20.
    The quantum corrections related to the ideal gas model often considered are those associated to the bosonic or fermionic nature of particles. However, in this work, other kinds of corrections related to the quantum nature of phase space are highlighted. These corrections are introduced as improvements in the expression of the partition function of an ideal gas. Then corrected thermodynamics properties of the ideal gas are deduced. Both the non-relativistic quantum and relativistic quantum cases are (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  21.  16
    The Geometry of Reduction: Compound Reduction and Overlapping State Space Domains.Joshua Rosaler - 2019 - Foundations of Physics 49 (10):1111-1142.
    The relationship whereby one physical theory encompasses the domain of empirical validity of another is widely known as “reduction.” Elsewhere I have argued that one influential methodology for showing that one physical theory reduces to another, associated with the so-called “Bronstein cube” of theories, rests on an oversimplified and excessively vague characterization of the mathematical relationship between theories that typically underpins reduction. I offer what I claim is a more precise characterization of this relationship, which here is based on a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  22.  15
    Information Theoretic Characterization of Physical Theories with Projective State Space.Marco Zaopo - 2015 - Foundations of Physics 45 (8):943-958.
    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23. Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics.Sean M. Carroll & Ashmeet Singh - 2021 - Physical Review A 103 (2):022213.
    We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  24. The Hidden Clash: Spacetime Outlook and Quantum-State Reductions.Rafael Andrés Alemañ-Berenguer - 2024 - Philosophies 9 (3):79.
    It is generally assumed that compatibility with special relativity is guaranteed by the invariance of the fundamental equations of quantum physics under Lorentz transformations and the impossibility of transferring energy or information faster than the speed of light. Despite this, various contradictions persist, which make us suspect the solidity of that compatibility. This paper focuses on collapse theories—although they are not the only way of interpreting quantum theory—in order to examine what seems to be insurmountable difficulties we encounter (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  25. Fermi blobs and the symplectic camel: a geometric picture of quantum states.Maurice A. de Gosson - 2016 - In Ignazio Licata (ed.), Beyond peaceful coexistence: the emergence of space, time and quantum. London: Imperial College Press.
     
    Export citation  
     
    Bookmark  
  26.  18
    Unitary state preparation, local position measurements, and spin in quantum mechanics.K. Kong Wan & R. G. McLean - 1994 - Foundations of Physics 24 (5):715-737.
    The orthodox presentation of quantum theory often includes statements on state preparation and measurements without mentioning how these processes can be achieved. The often quoted projection postulate is regarded by many as problematical. This paper presents a systematic framework for state preparation and measurement. Within the existing Hilbert space formulation of quantum mechanics for spinless particles we show that it is possible (1)to prepare an arbitrary state and (2)to reduce all quantum measurements to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  27.  62
    Quaternionic Quantum Dynamics on Complex Hilbert Spaces.Matthew A. Graydon - 2013 - Foundations of Physics 43 (5):656-664.
    We consider a quaternionic quantum formalism for the description of quantum states and quantum dynamics. We prove that generalized quantum measurements on physical systems in quaternionic quantum theory can be simulated by usual quantum measurements with positive operator valued measures on complex Hilbert spaces. Furthermore, we prove that quaternionic quantum channels can be simulated by completely positive trace preserving maps on complex matrices. These novel results map all quaternionic quantum processes to algorithms (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  28.  7
    On the Reality of the Quantum State Once Again: A No-Go Theorem for ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-Ontic Models. [REVIEW]Christine A. Aidala, Andrea Oldofredi & Gabriele Carcassi - 2024 - Foundations of Physics 54 (1):1-15.
    In this paper we show that ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-ontic models, as defined by Harrigan and Spekkens (HS), cannot reproduce quantum theory. Instead of focusing on probability, we use information theoretic considerations to show that all pure states of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-ontic models must be orthogonal to each other, in clear violation of quantum mechanics. Given that (i) Pusey, Barrett and Rudolph (PBR) previously showed that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29.  74
    EPR States and Bell Correlated States in Algebraic Quantum Field Theory.Yuichiro Kitajima - 2013 - Foundations of Physics 43 (10):1182-1192.
    A mathematical rigorous definition of EPR states has been introduced by Arens and Varadarajan for finite dimensional systems, and extended by Werner to general systems. In the present paper we follow a definition of EPR states due to Werner. Then we show that an EPR state for incommensurable pairs is Bell correlated, and that the set of EPR states for incommensurable pairs is norm dense between two strictly space-like separated regions in algebraic quantum field theory.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  30.  54
    Micro-States in the Interpretation of Quantum Theory.Gary M. Hardegree - 1980 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1980:43 - 54.
    The interpretation of quantum mechanics is discussed from the viewpoint of quantum logic (QL). QL is understood to concern the possible properties that can be ascribed to a physical system SYS. The micro-state of SYS at any given moment t is identified with the set of all properties actualized by SYS at time t. Minimal adequacy requirements are proposed for all interpretations of micro-states. A strict interpretation is defined to be one according to which the properties ascribable (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. De Sitter Space Without Dynamical Quantum Fluctuations.Kimberly K. Boddy, Sean M. Carroll & Jason Pollack - 2016 - Foundations of Physics 46 (6):702-735.
    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  32.  98
    Quantum Formalism with State-Collapse and Superluminal Communication.George Svetlichny - 1998 - Foundations of Physics 28 (2):131-155.
    Given the collapse hypothesis (CH) of quantum measurement, EPR-type correlations along with the hypothesis of the impossibility of superluminal communication (ISC) have the effect of globalizing gross features of the quantum formalism making them universally true. In particular, these hypotheses imply that state transformations of density matrices must be linear and that evolution which preserves purity of states must also be linear. A gedanken experiment shows that Lorentz covariance along with the second law of thermodynamics imply a (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  61
    Quantum dynamical reduction and reality: Replacing probability densities with densities in real space[REVIEW]Giancarlo Ghirardi - 1996 - Erkenntnis 45 (2-3):349 - 365.
    Consideration is given to recent attempts to solve the objectification problem of quantum mechanics by considering nonlinear and stochastic modifications of Schrödinger's evolution equation. Such theories agree with all predictions of standard quantum mechanics concerning microsystems but forbid the occurrence of superpositions of macroscopically different states. It is shown that the appropriate interpretation for such theories is obtained by replacing the probability densities of standard quantum mechanics with mass densities in real space. Criteria allowing a precise (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  34. Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  45
    The ultrametric Hilbert-space description of quantum measurements with a finite exactness.Andrew Khrennikov - 1996 - Foundations of Physics 26 (8):1033-1054.
    We provide a mathematical description of quantum measurements with a finite exactness. The exactness of a quantum measurement is used as a new metric on the space of quantum states. This metric differs very much from the standard Euclidean metric. This is the so-called ultrametric. We show that a finite exactness of a quantum measurement cannot he described by real numbers. Therefore, we must change the basic number field. There exist nonequivalent ultrametric Hilbert space (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36. Is Minkowski Space-Time Compatible with Quantum Mechanics?Eugene V. Stefanovich - 2002 - Foundations of Physics 32 (5):673-703.
    In quantum relativistic Hamiltonian dynamics, the time evolution of interacting particles is described by the Hamiltonian with an interaction-dependent term (potential energy). Boost operators are responsible for (Lorentz) transformations of observables between different moving inertial frames of reference. Relativistic invariance requires that interaction-dependent terms (potential boosts) are present also in the boost operators and therefore Lorentz transformations depend on the interaction acting in the system. This fact is ignored in special relativity, which postulates the universality of Lorentz transformations and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Quantum Blobs.Maurice A. de Gosson - 2013 - Foundations of Physics 43 (4):440-457.
    Quantum blobs are the smallest phase space units of phase space compatible with the uncertainty principle of quantum mechanics and having the symplectic group as group of symmetries. Quantum blobs are in a bijective correspondence with the squeezed coherent states from standard quantum mechanics, of which they are a phase space picture. This allows us to propose a substitute for phase space in quantum mechanics. We study the relationship between quantum (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  38.  30
    Toward a factually induced space-time quantum logic.Mioara Mugur-Schächter - 1992 - Foundations of Physics 22 (7):963-994.
    In the present work are identified the main features of the algebraic structure with respect to the logical operations, of the set of all the quantum mechanical utterances for which can be specified a factual counterpart and factual rules for truth valuation. This structure is found not to be a lattice. It depends crucially on the spacetime features of the operations by which the observer prepares the studied states and performs measurements on them.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  39. On Nonlinear Quantum Mechanics, Noncommutative Phase Spaces, Fractal-Scale Calculus and Vacuum Energy.Carlos Castro - 2010 - Foundations of Physics 40 (11):1712-1730.
    A (to our knowledge) novel Generalized Nonlinear Schrödinger equation based on the modifications of Nottale-Cresson’s fractal-scale calculus and resulting from the noncommutativity of the phase space coordinates is explicitly derived. The modifications to the ground state energy of a harmonic oscillator yields the observed value of the vacuum energy density. In the concluding remarks we discuss how nonlinear and nonlocal QM wave equations arise naturally from this fractal-scale calculus formalism which may have a key role in the final (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  40. The Space-Time Origin of Quantum Mechanics: Covering Law. [REVIEW]George Svetlichny - 2000 - Foundations of Physics 30 (11):1819-1847.
    A Hilbert-space model for quantum logic follows from space-time structure in theories with consistent state collapse descriptions. Lorentz covariance implies a condition on space-like separated propositions that if imposed on generally commuting ones would lead to the covering law, and such a generalization can be argued if state preparation can be conditioned to space-like separated events using EPR-type correlations. The covering law is thus related to space-time structure, though a final understanding of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  41.  36
    Entanglement Sharing in Real-Vector-Space Quantum Theory.William K. Wootters - 2012 - Foundations of Physics 42 (1):19-28.
    The limitation on the sharing of entanglement is a basic feature of quantum theory. For example, if two qubits are completely entangled with each other, neither of them can be at all entangled with any other object. In this paper we show, at least for a certain standard definition of entanglement, that this feature is lost when one replaces the usual complex vector space of quantum states with a real vector space. Moreover, the difference between the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Characterizing quantum theory in terms of information-theoretic constraints.Rob Clifton, Jeffrey Bub & Hans Halvorson - 2002 - Foundations of Physics 33 (11):1561-1591.
    We show that three fundamental information-theoretic constraints -- the impossibility of superluminal information transfer between two physical systems by performing measurements on one of them, the impossibility of broadcasting the information contained in an unknown physical state, and the impossibility of unconditionally secure bit commitment -- suffice to entail that the observables and state space of a physical theory are quantum-mechanical. We demonstrate the converse derivation in part, and consider the implications of alternative answers to a (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   111 citations  
  43.  53
    Here/There/Everywhere: Quantum Models for Decolonizing Canadian State Onto-Epistemology.Norah Bowman - 2019 - Foundations of Science 26 (1):171-186.
    In settler-colonial Canada, the state does not receive Indigenous testimony as credible evidence. While the state often accepts Indigenous testimony in formal hearings, the state fundamentally rejects Indigenous evidence as a description of the world as it is, as an onto-epistemology. In other words, the Indigenous worldview formation, while it functions as a knowledge system that knows and predicts life, is not admitted to regulatory discussions about effects of resource extraction projects on life. Particularly in such resource-extraction (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Quantum computation and pseudotelepathic games.Jeffrey Bub - 2008 - Philosophy of Science 75 (4):458-472.
    A quantum algorithm succeeds not because the superposition principle allows ‘the computation of all values of a function at once’ via ‘quantum parallelism’, but rather because the structure of a quantum state space allows new sorts of correlations associated with entanglement, with new possibilities for information‐processing transformations between correlations, that are not possible in a classical state space. I illustrate this with an elementary example of a problem for which a quantum algorithm (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  45.  56
    Spin and Wind Directions II: A Bell State Quantum Model.Diederik Aerts, Jonito Aerts Arguëlles, Lester Beltran, Suzette Geriente, Massimiliano Sassoli de Bianchi, Sandro Sozzo & Tomas Veloz - 2018 - Foundations of Science 23 (2):337-365.
    In the first half of this two-part article, we analyzed a cognitive psychology experiment where participants were asked to select pairs of directions that they considered to be the best example of Two Different Wind Directions, and showed that the data violate the CHSH version of Bell’s inequality, with same magnitude as in typical Bell-test experiments in physics. In this second part, we complete our analysis by presenting a symmetrized version of the experiment, still violating the CHSH inequality but now (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  46.  96
    Contrasting Classical and Quantum Vacuum States in Non-inertial Frames.Timothy H. Boyer - 2013 - Foundations of Physics 43 (8):923-947.
    Classical electron theory with classical electromagnetic zero-point radiation (stochastic electrodynamics) is the classical theory which most closely approximates quantum electrodynamics. Indeed, in inertial frames, there is a general connection between classical field theories with classical zero-point radiation and quantum field theories. However, this connection does not extend to noninertial frames where the time parameter is not a geodesic coordinate. Quantum field theory applies the canonical quantization procedure (depending on the local time coordinate) to a mirror-walled box, and, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  47.  43
    Measurement in quantum mechanics as a stochastic process on spaces of fuzzy events.Eduard Prugovečki - 1975 - Foundations of Physics 5 (4):557-571.
    The measurement of one or more observables can be considered to yield sample points which are in general fuzzy sets. Operationally these fuzzy sample points are the outcomes of calibration procedures undertaken to ensure the internal consistency of a scheme of measurement. By introducing generalized probability measures on σ-semifields of fuzzy events, one can view a quantum mechanical state as an ensemble of probability measures which specify the likelihood of occurrence of any specific fuzzy sample point at some (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  11
    The Equiareal Archimedean Synchronization Method of the Quantum Symplectic Phase Space: II. Circle-Valued Moment Map, Integrality, and Symplectic Abelian Shadows.Elias Zafiris - 2022 - Foundations of Physics 52 (2):1-32.
    The quantum transition probability assignment is an equiareal transformation from the annulus of symplectic spinorial amplitudes to the disk of complex state vectors, which makes it equivalent to the equiareal projection of Archimedes. The latter corresponds to a symplectic synchronization method, which applies to the quantum phase space in view of Weyl’s quantization approach involving an Abelian group of unitary ray rotations. We show that Archimedes’ method of synchronization, in terms of a measure-preserving transformation to an (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  49.  45
    On the Present State of the Philosophy of Quantum Mathematics.Howard Stein - 1982 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1982:563 - 581.
    It is suggested that the true physical significance of the Hilbert space structure in quantum mechanics remains (despite the undoubted significance of the elucidation given early by von Neumann, and further clarified by later discussions) less well understood than is usually supposed. Reasons are given for this view from considerations internal to the theory; a (remote) analogy is considered to the role, and presumed physical significance, of the notion of "ether" in nineteenth-century physics; the issues of measurement (or, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  50.  70
    Limited Holism and Real-Vector-Space Quantum Theory.Lucien Hardy & William K. Wootters - 2012 - Foundations of Physics 42 (3):454-473.
    Quantum theory has the property of “local tomography”: the state of any composite system can be reconstructed from the statistics of measurements on the individual components. In this respect the holism of quantum theory is limited. We consider in this paper a class of theories more holistic than quantum theory in that they are constrained only by “bilocal tomography”: the state of any composite system is determined by the statistics of measurements on pairs of components. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 999