Results for 'Enumeration degrees'

1000+ found
Order:
  1.  4
    Yates [1970], who obtained a low minimal degree as a corollary to his con.of Minimal Degrees Below - 1996 - In S. B. Cooper, T. A. Slaman & S. S. Wainer (eds.), Computability, enumerability, unsolvability: directions in recursion theory. New York: Cambridge University Press. pp. 81.
    Direct download  
     
    Export citation  
     
    Bookmark  
  2. Noncappable Enumeration Degrees Below $0'_e$.S. Cooper & Andrea Sorbi - 1996 - Journal of Symbolic Logic 61 (3):1347-1363.
     
    Export citation  
     
    Bookmark   2 citations  
  3.  29
    Noncappable enumeration degrees below 0'e. [REVIEW]S. Barry Cooper & Andrea Sorbi - 1996 - Journal of Symbolic Logic 61 (4):1347 - 1363.
    We prove that there exists a noncappable enumeration degree strictly below 0' e.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  6
    The role of true finiteness in the admissible recursively enumerable degrees.Noam Greenberg - 2006 - Providence, R.I.: American Mathematical Society.
    When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of $\alpha$-finiteness. As examples we discuss bothcodings of models of arithmetic into the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  5.  18
    Recursively Enumerable Degrees and the Degrees Less Than 0.C. E. M. Yates & John N. Crossley - 1970 - Journal of Symbolic Logic 35 (4):589-589.
  6.  49
    A note on the enumeration degrees of 1-generic sets.Liliana Badillo, Caterina Bianchini, Hristo Ganchev, Thomas F. Kent & Andrea Sorbi - 2016 - Archive for Mathematical Logic 55 (3-4):405-414.
    We show that every nonzero Δ20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta^{0}_{2}}$$\end{document} enumeration degree bounds the enumeration degree of a 1-generic set. We also point out that the enumeration degrees of 1-generic sets, below the first jump, are not downwards closed, thus answering a question of Cooper.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  20
    A Hierarchy of Computably Enumerable Degrees.Rod Downey & Noam Greenberg - 2018 - Bulletin of Symbolic Logic 24 (1):53-89.
    We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  28
    Initial segments of the enumeration degrees.Hristo Ganchev & Andrea Sorbi - 2016 - Journal of Symbolic Logic 81 (1):316-325.
    Using properties of${\cal K}$-pairs of sets, we show that every nonzero enumeration degreeabounds a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump asa. Some consequences of this fact are derived, that hold in the local structure of the enumeration degrees, including: There is an initial segment of enumeration degrees, whose nonzero elements are all high; there is a nonsplitting high enumeration degree; every noncappable enumeration degree (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  9.  43
    Definability in the enumeration degrees.Theodore A. Slaman & W. Hugh Woodin - 1997 - Archive for Mathematical Logic 36 (4-5):255-267.
    We prove that every countable relation on the enumeration degrees, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}, is uniformly definable from parameters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}. Consequently, the first order theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document} is recursively isomorphic to the second order theory of arithmetic. By an effective version of coding lemma, we show that the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  10.  20
    Bounding Nonsplitting Enumeration Degrees.Thomas F. Kent & Andrea Sorbi - 2007 - Journal of Symbolic Logic 72 (4):1405 - 1417.
    We show that every nonzero $\Sigma _{2}^{0}$ enumeration degree bounds a nonsplitting nonzero enumeration degree.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  11.  18
    The computably enumerable degrees are locally non-cappable.Matthew B. Giorgi - 2004 - Archive for Mathematical Logic 43 (1):121-139.
    We prove that every non-computable incomplete computably enumerable degree is locally non-cappable, and use this result to show that there is no maximal non-bounding computably enumerable degree.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  12.  13
    The recursively enumerable degrees have infinitely many one-types.Klaus Ambos-Spies & Robert I. Soare - 1989 - Annals of Pure and Applied Logic 44 (1-2):1-23.
  13.  27
    On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  14.  93
    Totally ω-computably enumerable degrees and bounding critical triples.Rod Downey, Noam Greenberg & Rebecca Weber - 2007 - Journal of Mathematical Logic 7 (2):145-171.
    We characterize the class of c.e. degrees that bound a critical triple as those degrees that compute a function that has no ω-c.e. approximation.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  15. Structural properties and Σ20 enumeration degrees.André Nies & Andrea Sorbi - 2000 - Journal of Symbolic Logic 65 (1):285-292.
    We prove that each Σ 0 2 set which is hypersimple relative to $\emptyset$ ' is noncuppable in the structure of the Σ 0 2 enumeration degrees. This gives a connection between properties of Σ 0 2 sets under inclusion and and the Σ 0 2 enumeration degrees. We also prove that some low non-computably enumerable enumeration degree contains no set which is simple relative to $\emptyset$ '.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Jumps of quasi-minimal enumeration degrees.Kevin McEvoy - 1985 - Journal of Symbolic Logic 50 (3):839-848.
  17. On minimal pairs of enumeration degrees.Kevin McEvoy & S. Barry Cooper - 1985 - Journal of Symbolic Logic 50 (4):983-1001.
  18. Definability in the recursively enumerable degrees.André Nies, Richard A. Shore & Theodore A. Slaman - 1996 - Bulletin of Symbolic Logic 2 (4):392-404.
    §1. Introduction. Natural sets that can be enumerated by a computable function always seem to be either actually computable or of the same complexity as the Halting Problem, the complete r.e. set K. The obvious question, first posed in Post [1944] and since then called Post's Problem is then just whether there are r.e. sets which are neither computable nor complete, i.e., neither recursive nor of the same Turing degree as K?Let be the r.e. degrees, i.e., the r.e. sets (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  19.  25
    Sublattices of the Recursively Enumerable Degrees.S. K. Thomason - 1971 - Mathematical Logic Quarterly 17 (1):273-280.
  20.  44
    Sublattices of the Recursively Enumerable Degrees.S. K. Thomason - 1971 - Mathematical Logic Quarterly 17 (1):273-280.
  21.  19
    Cappable recursively enumerable degrees and Post's program.Klaus Ambos-Spies & André Nies - 1992 - Archive for Mathematical Logic 32 (1):51-56.
    We give a simple structural property which characterizes the r.e. sets whose (Turing) degrees are cappable. Since cappable degrees are incomplete, this may be viewed as a solution of Post's program, which asks for a simple structural property of nonrecursive r.e. sets which ensures incompleteness.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  24
    Density of the cototal enumeration degrees.Joseph S. Miller & Mariya I. Soskova - 2018 - Annals of Pure and Applied Logic 169 (5):450-462.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  23.  36
    Then-rea enumeration degrees are dense.Alistair H. Lachlan & Richard A. Shore - 1992 - Archive for Mathematical Logic 31 (4):277-285.
  24.  26
    The Π20 enumeration degrees are not dense.William C. Calhoun & Theodore A. Slaman - 1996 - Journal of Symbolic Logic 61 (4):1364-1379.
    We show that the Π 0 2 enumeration degrees are not dense. This answers a question posed by Cooper.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  25.  29
    Prime models of computably enumerable degree.Rachel Epstein - 2008 - Journal of Symbolic Logic 73 (4):1373-1388.
    We examine the computably enumerable (c.e.) degrees of prime models of complete atomic decidable (CAD) theories. A structure has degree d if d is the degree of its elementary diagram. We show that if a CAD theory T has a prime model of c.e. degree c, then T has a prime model of strictly lower c.e. degree b, where, in addition, b is low (b' = 0'). This extends Csima's result that every CAD theory has a low prime model. (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  25
    Properly Σ2 Enumeration Degrees.S. B. Cooper & C. S. Copestake - 1988 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 34 (6):491-522.
  27.  12
    Properly Σ2 Enumeration Degrees.S. B. Cooper & C. S. Copestake - 1988 - Mathematical Logic Quarterly 34 (6):491-522.
  28.  10
    Complementing below recursively enumerable degrees.S. Barry Cooper & Richard L. Epstein - 1987 - Annals of Pure and Applied Logic 34 (1):15-32.
  29.  53
    Bounding computably enumerable degrees in the Ershov hierarchy.Angsheng Li, Guohua Wu & Yue Yang - 2006 - Annals of Pure and Applied Logic 141 (1):79-88.
    Lachlan observed that any nonzero d.c.e. degree bounds a nonzero c.e. degree. In this paper, we study the c.e. predecessors of d.c.e. degrees, and prove that given a nonzero d.c.e. degree , there is a c.e. degree below and a high d.c.e. degree such that bounds all the c.e. degrees below . This result gives a unified approach to some seemingly unrelated results. In particular, it has the following two known theorems as corollaries: there is a low c.e. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30.  13
    The computably enumerable degrees are locally non-cappable.Matthew B. Giorgi - 2003 - Archive for Mathematical Logic -1 (1):1-1.
  31.  16
    Collins Donald J.. Recursively enumerable degrees and the conjugacy problem. Acta mathematica, vol. 122 , pp. 115–160.C. R. J. Clapham - 1971 - Journal of Symbolic Logic 36 (3):540.
  32.  25
    C-Quasi-Minimal enumeration degrees below c'.Boris Solon - 2006 - Archive for Mathematical Logic 45 (4):505-517.
    This paper is dedicated to the study of properties of the operations ∪ and ∩ in the upper semilattice of the e-degrees as well as in the interval (c,c') e for any e-degree c.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  33.  25
    1-genericity in the enumeration degrees.Kate Copestake - 1988 - Journal of Symbolic Logic 53 (3):878-887.
  34.  31
    The limitations of cupping in the local structure of the enumeration degrees.Mariya I. Soskova - 2010 - Archive for Mathematical Logic 49 (2):169-193.
    We prove that a sequence of sets containing representatives of cupping partners for every nonzero ${\Delta^0_2}$ enumeration degree cannot have a ${\Delta^0_2}$ enumeration. We also prove that no subclass of the ${\Sigma^0_2}$ enumeration degrees containing the nonzero 3-c.e. enumeration degrees can be cupped to ${\mathbf{0}_e'}$ by a single incomplete ${\Sigma^0_2}$ enumeration degree.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  21
    Properly [image] Enumeration Degrees and the High/Low Hierarchy.Matthew Giorgi, Andrea Sorbi & Yue Yang - 2006 - Journal of Symbolic Logic 71 (4):1125 - 1144.
    We show that there exist downwards properly $\Sigma _{2}^{0}$ (in fact noncuppable) e-degrees that are not high. We also show that every high e-degree bounds a noncuppable e-degree.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  36.  46
    Empty intervals in the enumeration degrees.Thomas F. Kent, Andrew Em Lewis & Andrea Sorbi - 2012 - Annals of Pure and Applied Logic 163 (5):567-574.
  37.  62
    Badness and jump inversion in the enumeration degrees.Charles M. Harris - 2012 - Archive for Mathematical Logic 51 (3-4):373-406.
    This paper continues the investigation into the relationship between good approximations and jump inversion initiated by Griffith. Firstly it is shown that there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^{0}_{2}}$$\end{document} set A whose enumeration degree a is bad—i.e. such that no set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \in a}$$\end{document} is good approximable—and whose complement \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{A}}$$\end{document} has lowest possible jump, in other (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38.  28
    Undecidability and 1-types in the recursively enumerable degrees.Klaus Ambos-Spies & Richard A. Shore - 1993 - Annals of Pure and Applied Logic 63 (1):3-37.
    Ambos-Spies, K. and R.A. Shore, Undecidability and 1-types in the recursively enumerable degrees, Annals of Pure and Applied Logic 63 3–37. We show that the theory of the partial ordering of recursively enumerable Turing degrees is undecidable and has uncountably many 1-types. In contrast to the original proof of the former which used a very complicated O''' argument our proof proceeds by a much simpler infinite injury argument. Moreover, it combines with the permitting technique to get similar results (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  39.  9
    Strong Minimal Covers for Recursively Enumerable Degrees.S. Barry Cooper - 1996 - Mathematical Logic Quarterly 42 (1):191-196.
    We prove that there exists a nonzero recursively enumerable Turing degree possessing a strong minimal cover.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  40.  32
    Cupping and noncupping in the enumeration degrees of ∑20 sets.S. Barry Cooper, Andrea Sorbi & Xiaoding Yi - 1996 - Annals of Pure and Applied Logic 82 (3):317-342.
    We prove the following three theorems on the enumeration degrees of ∑20 sets. Theorem A: There exists a nonzero noncuppable ∑20 enumeration degree. Theorem B: Every nonzero Δ20enumeration degree is cuppable to 0′e by an incomplete total enumeration degree. Theorem C: There exists a nonzero low Δ20 enumeration degree with the anticupping property.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  41.  13
    Splittings of 0' into the Recursively Enumerable Degrees.Xiaoding Yi - 1996 - Mathematical Logic Quarterly 42 (1):249-269.
    Lachlan [9] proved that there exists a non-recursive recursively enumerable degree such that every non-recursive r. e. degree below it bounds a minimal pair. In this paper we first prove the dual of this fact. Second, we answer a question of Jockusch by showing that there exists a pair of incomplete r. e. degrees a0, a1 such that for every non-recursive r. e. degree w, there is a pair of incomparable r. e. degrees b0, b2 such that w (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  42.  20
    On the Jumps of the Degrees Below a Recursively Enumerable Degree.David R. Belanger & Richard A. Shore - 2018 - Notre Dame Journal of Formal Logic 59 (1):91-107.
    We consider the set of jumps below a Turing degree, given by JB={x':x≤a}, with a focus on the problem: Which recursively enumerable degrees a are uniquely determined by JB? Initially, this is motivated as a strategy to solve the rigidity problem for the partial order R of r.e. degrees. Namely, we show that if every high2 r.e. degree a is determined by JB, then R cannot have a nontrivial automorphism. We then defeat the strategy—at least in the form (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  43.  14
    Limit lemmas and jump inversion in the enumeration degrees.Evan J. Griffiths - 2003 - Archive for Mathematical Logic 42 (6):553-562.
    We show that there is a limit lemma for enumeration reducibility to 0 e ', analogous to the Shoenfield Limit Lemma in the Turing degrees, which relativises for total enumeration degrees. Using this and `good approximations' we prove a jump inversion result: for any set W with a good approximation and any set X< e W such that W≤ e X' there is a set A such that X≤ e A< e W and A'=W'. (All jumps (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  44.  12
    The density of infima in the recursively enumerable degrees.Theodore A. Slaman - 1991 - Annals of Pure and Applied Logic 52 (1-2):155-179.
    We show that every nontrivial interval in the recursively enumerable degrees contains an incomparable pair which have an infimum in the recursively enumerable degrees.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  45.  12
    The Embedding Problem for the Recursively Enumerable Degrees.Shoenfield'S. Conjecture - 1985 - In Anil Nerode & Richard A. Shore (eds.), Recursion theory. Providence, R.I.: American Mathematical Society. pp. 42--13.
  46.  16
    A structural dichotomy in the enumeration degrees.Hristo A. Ganchev, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2022 - Journal of Symbolic Logic 87 (2):527-544.
    We give several new characterizations of the continuous enumeration degrees. The main one proves that an enumeration degree is continuous if and only if it is not half of a nontrivial relativized $\mathcal {K}$ -pair. This leads to a structural dichotomy in the enumeration degrees.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  47.  17
    A necessary and sufficient condition for embedding ranked finite partial lattices into the computably enumerable degrees.M. Lerman - 1998 - Annals of Pure and Applied Logic 94 (1-3):143-180.
    We define a class of finite partial lattices which admit a notion of rank compatible with embedding constructions, and present a necessary and sufficient condition for the embeddability of a finite ranked partial lattice into the computably enumerable degrees.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  48.  25
    Undecidability and 1-types in intervals of the computably enumerable degrees.Klaus Ambos-Spies, Denis R. Hirschfeldt & Richard A. Shore - 2000 - Annals of Pure and Applied Logic 106 (1-3):1-47.
    We show that the theory of the partial ordering of the computably enumerable degrees in any given nontrivial interval is undecidable and has uncountably many 1-types.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  11
    The jump operator on the ω-enumeration degrees.Hristo Ganchev & Ivan N. Soskov - 2009 - Annals of Pure and Applied Logic 160 (3):289-301.
    The jump operator on the ω-enumeration degrees was introduced in [I.N. Soskov, The ω-enumeration degrees, J. Logic Computat. 17 1193–1214]. In the present paper we prove a jump inversion theorem which allows us to show that the enumeration degrees are first order definable in the structure of the ω-enumeration degrees augmented by the jump operator. Further on we show that the groups of the automorphisms of and of the enumeration degrees (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  50.  10
    A structural dichotomy in the enumeration degrees.Hristo A. Ganchev, Iskander Sh Kalimullin, Joseph S. Miller & Mariya I. Soskova - 2020 - Journal of Symbolic Logic:1-18.
    We give several new characterizations of the continuous enumeration degrees. The main one proves that an enumeration degree is continuous if and only if it is not half a nontrivial relativized K-pair. This leads to a structural dichotomy in the enumeration degrees.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000