Ueber Das an lebewesen im allgemeinsten beobachtbare biophysikalische gesetz, zugleich eine zusammenfassung meiner, sich auf die den entwicklungsgang der lebewesen lenkenden biophysikalischen faktoren bestehenden bisherigen forschungen

Acta Biotheoretica 1 (1-2):113-132 (1935)
  Copy   BIBTEX

Abstract

Author cultivated fermenting cells (Scccharomyces spec.) in must of grapes and measured the various vital phenomena. The data thus received described in a rectangular co-ordinate as a function of time, found three kinds of characteristic curves in every vital phenomenon (whether belonging to the group of feeding, growth or that of increase): I. the curve described bySachs in 1873 and called the curve of the great period of evolution (Fig. 1:s). 2. the one described byM. G. Harting in 1845, and the curve of individual or ontogenetic evolution (Fig. 1:S). 3. the undulatory curve similar to a sinus-cosinus function, deduced in theory by author and later on, in 1915, also found on an experimental basis (Fig. 3). — Analysing these curves, author demonstrates that they are in the closest relationship with each other. The course ofSachs' great period is identical with the function of the aperiodically mitigated vibromotion; the course ofHarting's ontogenetic curve is identical with the integral of the previous aperiodic function; the undulatory curve discovered by the author, and the one belonging to the philogenesis of evolution, consist of two details, one of the members is formed from the function of aperiodically mitigated vibromotion, and the other from a function of periodically mitigated vibration. — Mitigated vibromotion, according to our present knowledge can only arise if a body capable of vibration is simultaneously affected by a force establishing movement and a resistance mitigating the movement. In the living organism, on this basis, there is also a force and a resistance. The living organism obtains this force from food while the resistance is rooted in the construction of the cell. The author proves that the cells which no longer divide (the so-called permanent tissueforming cells) follow an aperiodical vibromotor course in their development while in the development of the continually dividing, so-called meristematic cells, owing to the periodic change of division and regeneration, the potential of the energy accommodates itself to the periodic vibromotor course. Both forms of development are derived from the identical differential equation: d2s/dt2=−w2s−2r ds/dt, the only difference between the two phenomena is that by aperiodic oscillation it is r2>w2 while by periodic it is r2

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,991

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2009-01-28

Downloads
29 (#568,210)

6 months
4 (#862,849)

Historical graph of downloads
How can I increase my downloads?