Results for 'Thermodynamics, statistical mechanics, quantum mechanics, macrostates'

988 found
Order:
  1. Quantum Foundations of Statistical Mechanics and Thermodynamics.Orly Shenker - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. Ch. 29.
    Statistical mechanics is often taken to be the paradigm of a successful inter-theoretic reduction, which explains the high-level phenomena (primarily those described by thermodynamics) by using the fundamental theories of physics together with some auxiliary hypotheses. In my view, the scope of statistical mechanics is wider since it is the type-identity physicalist account of all the special sciences. But in this chapter, I focus on the more traditional and less controversial domain of this theory, namely, that of explaining (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  3. Early Quantum Theory Genesis: Reconciliation of Maxwellian Electrodynamics, Thermodynamics and Statistical Mechanics.Rinat M. Nugayev - 2000 - Annales de la Fondation Louis de Broglie 25 (3-4):337-362.
    Genesis of the early quantum theory represented by Planck’s 1897-1906 papers is considered. It is shown that the first quantum theoretical schemes were constructed as crossbreed ones composed from ideal models and laws of Maxwellian electrodynamics, Newtonian mechanics, statistical mechanics and thermodynamics. Ludwig Boltzmann’s ideas and technique appeared to be crucial. Deriving black-body radiation law Max Planck had to take the experimental evidence into account. It forced him not to deduce from phenomena but to use more theory (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Reducing Emergence: The Case Studies in Statistic Thermodynamics, General Relativity, and Quantum Mechanics.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (23):1-3.
    The emergent properties are properties referring to a system as a whole, but they do not make sense to its elements or parts being small enough. Furthermore certain emergent properties are reducible to those of elements or relevant parts often. The paper means the special case where the description of the system by means of its emergent properties is much simpler than that of its relevant elements or parts. The concept is investigated by a case study based on statistic thermodynamics, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  5. The foundations of quantum mechanics and the approach to thermodynamic equilibrium.David Z. Albert - 1994 - British Journal for the Philosophy of Science 45 (2):669-677.
    It is argued that certain recent advances in the construction of a theory of the collapses of Quantum Mechanical wave functions suggest the possibility of new and improved foundations for statistical mechanics, foundations in which epistemic considerations play no role.
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   33 citations  
  6.  96
    Statistical mechanical proof of the second law of thermodynamics based on volume entropy.Michele Campisi - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (1):181-194.
    In a previous work (M. Campisi. Stud. Hist. Phil. M. P. 36 (2005) 275-290) we have addressed the mechanical foundations of equilibrium thermodynamics on the basis of the Generalized Helmholtz Theorem. It was found that the volume entropy provides a good mechanical analogue of thermodynamic entropy because it satisfies the heat theorem and it is an adiabatic invariant. This property explains the ``equal'' sign in Clausius principle ($S_f \geq S_i$) in a purely mechanical way and suggests that the volume entropy (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  7.  58
    Interpreting Probabilities in Quantum Field Theory and Quantum Statistical Mechanics.Laura Ruetsche & John Earman - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford University Press. pp. 263.
    Philosophical accounts of quantum theory commonly suppose that the observables of a quantum system form a Type-I factor von Neumann algebra. Such algebras always have atoms, which are minimal projection operators in the case of quantum mechanics. However, relativistic quantum field theory and the thermodynamic limit of quantum statistical mechanics make extensive use of von Neumann algebras of more general types. This chapter addresses the question whether interpretations of quantum probability devised in the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  8. Connections Between the Thermodynamics of Classical Electrodynamic Systems and Quantum Mechanical Systems for Quasielectrostatic Operations.Daniel C. Cole - 1999 - Foundations of Physics 29 (12):1819-1847.
    The thermodynamic behavior is analyzed of a single classical charged particle in thermal equilibrium with classical electromagnetic thermal radiation, while electrostatically bound by a fixed charge distribution of opposite sign. A quasistatic displacement of this system in an applied electrostatic potential is investigated. Treating the system nonrelativistically, the change in internal energy, the work done, and the change in caloric entropy are all shown to be expressible in terms of averages involving the distribution of the position coordinates alone. A convenient (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Quantum-information conservation. The problem about “hidden variables”, or the “conservation of energy conservation” in quantum mechanics: A historical lesson for future discoveries.Vasil Penchev - 2020 - Energy Engineering (Energy) eJournal (Elsevier: SSRN) 3 (78):1-27.
    The explicit history of the “hidden variables” problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the “conservation of energy conservation” in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the “fourth Heisenberg uncertainty”, that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  71
    The case for black hole thermodynamics part II: Statistical mechanics.David Wallace - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):103-117.
    I present in detail the case for regarding black hole thermodynamics as having a statistical-mechanical explanation in exact parallel with the statistical-mechanical explanation believed to underly the thermodynamics of other systems. I focus on three lines of argument: zero-loop and one-loop calculations in quantum general relativity understood as a quantum field theory, using the path-integral formalism; calculations in string theory of the leading-order terms, higher-derivative corrections, and quantum corrections, in the black hole entropy formula for (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  11.  48
    The formalism of equilibrium quantum statistical mechanics revisited.Olaf Melsheimer - 1982 - Foundations of Physics 12 (1):59-84.
    It is shown that the traditional formalism of equilibrium quantum statistical mechanics may fully be incorporated into a general macro-observable approach to quantum statistical mechanics recently proposed by the same author. (1,2) In particular, the partition functions which in the traditional approach are assumed to connect nonnormalized density operators with thermodynamic functions are reinterpreted as functions connecting so-called quantum mechanical effect operators with state parameters. It is argued that these functions although only part of a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  60
    Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature.Valia Allori (ed.) - 2020 - Singapore: World Scientific.
    The book explores several open questions in the philosophy of statistical mechanics. Each chapter is written by a leading expert in the field. Here is a list of some questions that are addressed in the book: 1) Boltzmann showed how the phenomenological gas laws of thermodynamics can be derived from statistical mechanics. Since classical mechanics is a deterministic theory there are no probabilities in it. Since statistical mechanics is based on classical mechanics, all the probabilities statistical (...)
  13.  54
    Foundation of statistical mechanics: The auxiliary hypotheses.Orly Shenker - 2017 - Philosophy Compass 12 (12):e12464.
    Statistical mechanics is the name of the ongoing attempt to explain and predict certain phenomena, above all those described by thermodynamics on the basis of the fundamental theories of physics, in particular mechanics, together with certain auxiliary assumptions. In another paper in this journal, Foundations of statistical mechanics: Mechanics by itself, I have shown that some of the thermodynamic regularities, including the probabilistic ones, can be described in terms of mechanics by itself. But in order to prove those (...)
    Direct download  
     
    Export citation  
     
    Bookmark   16 citations  
  14. Maxwell’s Demon in Quantum Mechanics.Orly Shenker & Meir Hemmo - 2020 - Entropy 22 (3):269.
    Maxwell’s Demon is a thought experiment devised by J. C. Maxwell in 1867 in order to show that the Second Law of thermodynamics is not universal, since it has a counter-example. Since the Second Law is taken by many to provide an arrow of time, the threat to its universality threatens the account of temporal directionality as well. Various attempts to “exorcise” the Demon, by proving that it is impossible for one reason or another, have been made throughout the years, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  27
    Quantum Mechanics and the Principle of Least Radix Economy.Vladimir Garcia-Morales - 2015 - Foundations of Physics 45 (3):295-332.
    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Statistical mechanics and the ontological interpretation.D. Bohm & B. J. Hiley - 1996 - Foundations of Physics 26 (6):823-846.
    To complete our ontological interpretation of quantum theory we have to conclude a treatment of quantum statistical mechanics. The basic concepts in the ontological approach are the particle and the wave function. The density matrix cannot play a fundamental role here. Therefore quantum statistical mechanics will require a further statistical distribution over wave functions in addition to the distribution of particles that have a specified wave function. Ultimately the wave function of the universe will (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Is - kTr( ln ) the entropy in quantum mechanics.Orly Shenker - 1999 - British Journal for the Philosophy of Science 50 (1):33-48.
    In quantum mechanics, the expression for entropy is usually taken to be -kTr(ln), where is the density matrix. The convention first appears in Von Neumann's Mathematical Foundations of Quantum Mechanics. The argument given there to justify this convention is the only one hitherto offered. All the arguments in the field refer to it at one point or another. Here this argument is shown to be invalid. Moreover, it is shown that, if entropy is -kTr(ln), then perpetual motion machines (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  18.  30
    Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics.Robert Batterman & Lawrence Sklar - 1995 - Philosophical Review 104 (4):624.
    Philosophers of physics are very familiar with foundational problems in quantum mechanics and in the theory of relativity. In both fields, the puzzles, if not solved, are at least reasonably well formulated and possess well-characterized solution strategies. Sklar’s book Physics and Chance focuses on a pair of theories, thermodynamics and statistical mechanics, for which puzzles and foundational paradoxes abound, but where there is very little agreement upon the means with which they may best be approached. As he notes (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   64 citations  
  19.  96
    Justification in statistical mechanics.Kevin Davey - unknown
    According to a standard view of the second law of thermodynamics, our belief in the second law can be justified by pointing out that low entropy macrostates are less probable than high entropy macrostates, and then noting that a system in an improbable state will tend to evolve toward a more probable state. I would like to argue that this justification of the second law of thermodynamics is fundamentally flawed, and will show that some puzzles sometimes associated with (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  20. The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  90
    The justification of probability measures in statistical mechanics.Kevin Davey - 2008 - Philosophy of Science 75 (1):28-44.
    According to a standard view of the second law of thermodynamics, our belief in the second law can be justified by pointing out that low-entropy macrostates are less probable than high-entropy macrostates, and then noting that a system in an improbable state will tend to evolve toward a more probable state. I would like to argue that this justification of the second law is unhelpful at best and wrong at worst, and will argue that certain puzzles sometimes associated (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  22.  52
    Thermodynamics, Statistical Mechanics and the Complexity of Reductions.Lawrence Sklar - 1974 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1974:15 - 32.
  23. A unified quantum theory of mechanics and thermodynamics. Part IIa. Available energy.George N. Hatsopoulos & Elias P. Gyftopoulos - 1976 - Foundations of Physics 6 (2):127-141.
    Part II of this three-part paper presents some of the most important theorems that can be deduced from the four postulates of the unified theory discussed in Part I. In Part IIa, it is shown that the maximum energy that can be extracted adiabatically from any system in any state is solely a function of the density operator $\hat \rho$ associated with the state. Moreover, it is shown that for any state of a system, nonequilibrium, equilibrium or stable equilibrium, a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  24. Connecting Spin and Statistics in Quantum Mechanics.Arthur Jabs - 2014 - arXiv:0810.2399.
    The spin-statistics connection is derived in a simple manner under the postulates that the original and the exchange wave functions are simply added, and that the azimuthal phase angle, which defines the orientation of the spin part of each single-particle spin-component eigenfunction in the plane normal to the spin-quantization axis, is exchanged along with the other parameters. The spin factor (−1)2s belongs to the exchange wave function when this function is constructed so as to get the spinor ambiguity under control. (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  25. Reducing thermodynamics to statistical mechanics: The case of entropy.Craig Callender - 1999 - Journal of Philosophy 96 (7):348-373.
    This article argues that most of the approaches to the foundations of statistical mechanics have severed their link with the original foundational project, the project of demonstrating how real mechanical systems can behave thermodynamically.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   78 citations  
  26.  10
    Connecting Spin and Statistics in Quantum Mechanics.Arthur Jabs - 2010 - Foundations of Physics 40 (7):776-792.
    The spin-statistics connection is derived in a simple manner under the postulates that the original and the exchange wave functions are simply added, and that the azimuthal phase angle, which defines the orientation of the spin part of each single-particle spin-component eigenfunction in the plane normal to the spin-quantization axis, is exchanged along with the other parameters. The spin factor 2s belongs to the exchange wave function when this function is constructed so as to get the spinor ambiguity under control. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  27. Rigorous information-theoretic derivation of quantum-statistical thermodynamics. II.William Band & James L. Park - 1977 - Foundations of Physics 7 (9-10):705-721.
    Part I of the present work outlined the rigorous application of information theory to a quantum mechanical system in a thermodynamic equilibrium state. The general formula developed there for the best-guess density operator $\hat \rho$ was indeterminate because it involved in an essential way an unspecified prior probability distribution over the continuumD H of strong equilibrium density operators. In Part II mathematical evaluation of $\hat \rho$ is completed after an epistemological analysis which leads first to the discretization ofD H (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28.  24
    Email: Unruh@ physics. Ubc. ca.is Quantum Mechanics Non-Local - 2002 - In T. Placek & J. Butterfield (eds.), Non-Locality and Modality. Kluwer Academic Publishers.
  29. Statistical mechanics and thermodynamics: A Maxwellian view.Wayne C. Myrvold - 2011 - Studies in History and Philosophy of Science Part A 42 (4):237-243.
    One finds, in Maxwell's writings on thermodynamics and statistical physics, a conception of the nature of these subjects that differs in interesting ways from the way that they are usually conceived. In particular, though—in agreement with the currently accepted view—Maxwell maintains that the second law of thermodynamics, as originally conceived, cannot be strictly true, the replacement he proposes is different from the version accepted by most physicists today. The modification of the second law accepted by most physicists is a (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  30.  17
    How macrostates come about?Marton Gomori, Balazs Gyenis & Gábor Hofer-Szabó - unknown
    This paper is a further consideration of Hemmo and Shenker’s ideas about the proper conceptual characterization of macrostates in statistical mechanics. We provide two formulations of how macrostates come about as elements of certain partitions of the system’s phase space imposed on by the interaction between the system and an observer, and we show that these two formulations are mathematically equivalent. We also reflect on conceptual issues regarding the relationship of macrostates to distinguishability, thermodynamic regularity, observer (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Does von Neumann Entropy Correspond to Thermodynamic Entropy?Eugene Y. S. Chua - 2021 - Philosophy of Science 88 (1):145-168.
    Conventional wisdom holds that the von Neumann entropy corresponds to thermodynamic entropy, but Hemmo and Shenker (2006) have recently argued against this view by attacking von Neumann's (1955) argument. I argue that Hemmo and Shenker's arguments fail due to several misunderstandings: about statistical-mechanical and thermodynamic domains of applicability, about the nature of mixed states, and about the role of approximations in physics. As a result, their arguments fail in all cases: in the single-particle case, the finite particles case, and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32.  27
    Reducing thermodynamics to Boltzmannian statistical mechanics: the case of macro values.Alexander Ehmann - 2022 - Synthese 200 (6):1-35.
    Thermodynamic macro variables, such as the temperature or volume macro variable, can take on a continuum of allowable values, called thermodynamic macro values. Although referring to the same macro phenomena, the macro variables of Boltzmannian Statistical Mechanics (BSM) differ from thermodynamic macro variables in an important respect: within the framework of BSM the evolution of macro values of systems with finite available phase space is invariably modelled as discontinuous, due to the method of partitioning phase space into macro regions (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33. Thermodynamics of an Empty Box.G. J. Schmitz, M. te Vrugt, T. Haug-Warberg, L. Ellingsen & P. Needham - 2023 - Entropy 25 (315):1-30.
    A gas in a box is perhaps the most important model system studied in thermodynamics and statistical mechanics. Usually, studies focus on the gas, whereas the box merely serves as an idealized confinement. The present article focuses on the box as the central object and develops a thermodynamic theory by treating the geometric degrees of freedom of the box as the degrees of freedom of a thermodynamic system. Applying standard mathematical methods to the thermody- namics of an empty box (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  34.  32
    Spin-Statistics Connection for Relativistic Quantum Mechanics.A. F. Bennett - 2015 - Foundations of Physics 45 (4):370-381.
    The spin-statistics connection has been proved for nonrelativistic quantum mechanics . The proof is extended here to the relativistic regime using the parametrized Dirac equation. A causality condition is not required.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Understanding thermodynamic singularities: Phase transitions, data, and phenomena.Sorin Bangu - 2009 - Philosophy of Science 76 (4):488-505.
    According to standard (quantum) statistical mechanics, the phenomenon of a phase transition, as described in classical thermodynamics, cannot be derived unless one assumes that the system under study is infinite. This is naturally puzzling since real systems are composed of a finite number of particles; consequently, a well‐known reaction to this problem was to urge that the thermodynamic definition of phase transitions (in terms of singularities) should not be “taken seriously.” This article takes singularities seriously and analyzes their (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  36. Statistics, Symmetry, and the Conventionality of Indistinguishability in Quantum Mechanics.Darrin W. Belousek - 2000 - Foundations of Physics 30 (1):1-34.
    The question to be addressed is, In what sense and to what extent do quantum statistics for, and the standard formal quantum-mechanical description of, systems of many identical particles entail that identical quantum particles are indistinguishable? This paper argues that whether or not we consider identical quantum particles as indistinguishable is a matter of theory choice underdetermined by logic and experiment.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  37. Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  38.  39
    The Gibbs Paradox and the Distinguishability of Identical Particles.Marijn A. M. Versteegh & Dennis Dieks - unknown
    Classical particles of the same kind are distinguishable: they can be labeled by their positions and follow different trajectories. This distinguishability affects the number of ways W a macrostate can be realized on the micro-level, and via S=k ln W this leads to a non-extensive expression for the entropy. This result is generally considered wrong because of its inconsistency with thermodynamics. It is sometimes concluded from this inconsistency, notoriously illustrated by the Gibbs paradox, that identical particles must be treated as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  39.  13
    Thermodynamic Entropy in Quantum Statistics for Stock Market Networks.Jianjia Wang, Chenyue Lin & Yilei Wang - 2019 - Complexity 2019:1-11.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  98
    Quantum-mechanical Statistics and the Inclusivist Approach to the Nature of Particulars.Francesco Orilia - 2006 - Synthese 148 (1):57-77.
    There have been attempts to derive anti-haeccetistic conclusions from the fact that quantum mechanics (QM) appeals to non-standard statistics. Since in fact QM acknowledges two kinds of such statistics, Bose-Einstein and Fermi-Dirac, I argue that we could in the same vein derive the sharper anti-haeccetistic conclusion that bosons are bundles of tropes and fermions are bundles of universals. Moreover, since standard statistics is still appropriate at the macrolevel, we could also venture to say that no anti-haecceitistic conclusion is warranted (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Is the Statistical Interpretation of Quantum Mechanics ψ-Ontic or ψ-Epistemic?Mario Hubert - 2023 - Foundations of Physics 53 (16):1-23.
    The ontological models framework distinguishes ψ-ontic from ψ-epistemic wave- functions. It is, in general, quite straightforward to categorize the wave-function of a certain quantum theory. Nevertheless, there has been a debate about the ontological status of the wave-function in the statistical interpretation of quantum mechanics: is it ψ-epistemic and incomplete or ψ-ontic and complete? I will argue that the wave- function in this interpretation is best regarded as ψ-ontic and incomplete.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  40
    The foundations of quantum mechanics and the approach to thermodynamic equilibrium.David Z. Albert - 1994 - Erkenntnis 41 (2):191-206.
  43.  30
    Quantum Mechanics as a Statistical Description of Classical Electrodynamics.Yehonatan Knoll - 2017 - Foundations of Physics 47 (7):959-990.
    It is shown that quantum mechanics is a plausible statistical description of an ontology described by classical electrodynamics. The reason that no contradiction arises with various no-go theorems regarding the compatibility of QM with a classical ontology, can be traced to the fact that classical electrodynamics of interacting particles has never been given a consistent definition. Once this is done, our conjecture follows rather naturally, including a purely classical explanation of photon related phenomena. Our analysis entirely rests on (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  44.  48
    Statistical inference and quantum mechanical measurement.Rodney W. Benoist, Jean-Paul Marchand & Wolfgang Yourgrau - 1977 - Foundations of Physics 7 (11-12):827-833.
    We analyze the quantum mechanical measuring process from the standpoint of information theory. Statistical inference is used in order to define the most likely state of the measured system that is compatible with the readings of the measuring instrument and the a priori information about the correlations between the system and the instrument. This approach has the advantage that no reference to the time evolution of the combined system need be made. It must, however, be emphasized that the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  45.  48
    Quantum statistical mechanics as a construction of an embedding scheme.Olaf Melsheimer - 1983 - Foundations of Physics 13 (7):745-758.
    The aim of the present paper is to show that the formalism of equilibrium quantum statistical mechanics can fully be incorporated into Ludwig's embedding scheme for classical theories in many-body quantum mechanics. A construction procedure based on a recently developed reconstruction procedure for the so-called macro-observable is presented which leads to the explicit determination of the set of classical ensembles compatible with the embedding scheme.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46. Einstein's Revolution: Reconciliation of Mechanics, Electrodynamics and Thermodynamics.Rinat M. Nugayev - 2000 - Physis.Rivista Internazionale Di Storia Della Scienza (1):181-207.
    The aim of this paper is to make a step towards a complete description of Special Relativity genesis and acceptance, bringing some light on the intertheoretic relations between Special Relativity and other physical theories of the day. I’ll try to demonstrate that Special Relativity and the Early Quantum Theory were created within the same programme of statistical mechanics, thermodynamics and Maxwellian electrodynamics reconciliation, i.e. elimination of the contradictions between the consequences of this theories. The approach proposed enables to (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  47.  42
    Statistical VS Wave Realism in the Foundations of Quantum Mechanics.Claudio Calosi, Vincenzo Fano, Pierluigi Graziani & Gino Tarozzi - unknown
    Different realistic attitudes towards wavefunctions and quantum states are as old as quantum theory itself. Recently Pusey, Barret and Rudolph on the one hand, and Auletta and Tarozzi on the other, have proposed new interesting arguments in favor of a broad realistic interpretation of quantum mechanics that can be considered the modern heir to some views held by the fathers of quantum theory. In this paper we give a new and detailed presentation of such arguments, propose (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  25
    The Second Law of Thermodynamics at the Microscopic Scale.Thibaut Josset - 2017 - Foundations of Physics 47 (9):1185-1190.
    In quantum statistical mechanics, equilibrium states have been shown to be the typical states for a system that is entangled with its environment, suggesting a possible identification between thermodynamic and von Neumann entropies. In this paper, we investigate how the relaxation toward equilibrium is made possible through interactions that do not lead to significant exchange of energy, and argue for the validity of the second law of thermodynamics at the microscopic scale.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  49. Implications of quantum theory in the foundations of statistical mechanics.David Wallace - manuscript
    An investigation is made into how the foundations of statistical mechanics are affected once we treat classical mechanics as an approximation to quantum mechanics in certain domains rather than as a theory in its own right; this is necessary if we are to understand statistical-mechanical systems in our own world. Relevant structural and dynamical differences are identified between classical and quantum mechanics (partly through analysis of technical work on quantum chaos by other authors). These imply (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  50. Does the Minimal Statistical Interpretation of Quantum Mechanics Resolve the Measurement Problem?Nicholas Maxwell - 1975 - Methodology and Science 8:84-101.
    It is argued that the so-called minimal statistical interpretation of quantum mechanics does not completely resolve the measurement problem in that this view is unable to show that quantjum mechanics can dispense with classical physics when it comes to a treatment of the measuring interaction. It is suggested that the view that quantum mechanics applies to individual systems should not be too hastily abandoned, in that this view gives perhaps the best hope of leading to a version (...)
     
    Export citation  
     
    Bookmark   5 citations  
1 — 50 / 988