Results for 'Relativistic quantum mechanics'

1000+ found
Order:
  1. Non-relativistic quantum mechanics.Michael Dickson - unknown
    This essay is a discussion of the philosophical and foundational issues that arise in non-relativistic quantum theory. After introducing the formalism of the theory, I consider: characterizations of the quantum formalism, empirical content, uncertainty, the measurement problem, and non-locality. In each case, the main point is to give the reader some introductory understanding of some of the major issues and recent ideas.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  2.  87
    Relativistic Quantum Mechanics and Field Theory.F. Strocchi - 2004 - Foundations of Physics 34 (3):501-527.
    The problems which arise for a relativistic quantum mechanics are reviewed and critically examined in connection with the foundations of quantum field theory. The conflict between the quantum mechanical Hilbert space structure, the locality property and the gauge invariance encoded in the Gauss' law is discussed in connection with the various quantization choices for gauge fields.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Relativistic quantum mechanics and the conventionality of simultaneity.David Gunn & Indrakumar Vetharaniam - 1995 - Philosophy of Science 62 (4):599-608.
    1. Introduction Dirac's theory of the electron was the first widely accepted relativistic quantum theory, and it later provided the basis for constructing the modern electromagnetic theory of quantum electrodynamics. Whereas Dirac's theory in its simplest form describes relativistic freely-propagating massive non-chiral particles of spin-½, QED describes how such particles interact with one another electromagnetically, via a dynamical quantum field.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  4.  39
    Relativistic Quantum Mechanics as a Telegraph.O. Costa de Beauregard - 2001 - Foundations of Physics 31 (5):837-848.
    A derivation by Fröhner of non-relativistic quantum mechanics via Fourier analysis applied to probability theory is not extendable to relativistic quantum mechanics because Schrödinger's positive definite probability density ψ*ψ is lost (Dirac's spin 1/2 case being the exception). The nature of the Fourier link then changes; it points to a redefinition of the probability scheme as an information carrying telegraph, the code of which is Born's as extended by Dirac and by Feynman. Hermitian symmetry (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  5. Relativistic Quantum Mechanics through Frame‐Dependent Constructions.Jeffrey A. Barrett - 2005 - Philosophy of Science 72 (5):802-813.
    This paper is concerned with the possibility and nature of relativistic hidden-variable formulations of quantum mechanics. Both ad hoc teleological constructions of spacetime maps and frame-dependent constructions of spacetime maps are considered. While frame-dependent constructions are clearly preferable, they provide neither mechanical nor causal explanations for local quantum events. Rather, the hiddenvariable dynamics used in such constructions is just a rule that helps to characterize the set of all possible spacetime maps. But while having neither mechanical (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  6.  10
    Relativistic Quantum Mechanics.Lawrence P. Horwitz - 2015 - Dordrecht: Imprint: Springer.
    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  53
    Tensorial Relativistic Quantum Mechanics in (1+1) Dimensions and Boundary Conditions.Vidal Alonso, Salvatore De Vincenzo & Luigi Mondino - 1999 - Foundations of Physics 29 (2):231-250.
    The tensorial relativistic quantum mechanics in (1+1) dimensions is considered. Its kinematical and dynamical features are reviewed as well as the problem of finding the Dirac spinor for given finite multivectors. For stationary states, the dynamical tensorial equations, equivalent to the Dirac equation, are solved for a free particle, for a particle inside a box, and for a particle in a step potential.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  8. Geometrizing Relativistic Quantum Mechanics.F. T. Falciano, M. Novello & J. M. Salim - 2010 - Foundations of Physics 40 (12):1885-1901.
    We propose a new approach to describe quantum mechanics as a manifestation of non-Euclidean geometry. In particular, we construct a new geometrical space that we shall call Qwist. A Qwist space has a extra scalar degree of freedom that ultimately will be identified with quantum effects. The geometrical properties of Qwist allow us to formulate a geometrical version of the uncertainty principle. This relativistic uncertainty relation unifies the position-momentum and time-energy uncertainty principles in a unique relation (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  17
    Dual Relativistic Quantum Mechanics I.Tepper L. Gill, Gonzalo Ares de Parga, Trey Morris & Mamadou Wade - 2022 - Foundations of Physics 52 (4):1-21.
    It was shown in Dirac A117, 610; A118, 351, 1928) that the ultra-violet divergence in quantum electrodynamics is caused by a violation of the time-energy uncertainly relationship, due to the implicit assumption of infinitesimal time information. In Wheeler et al. it was shown that Einstein’s special theory of relativity and Maxwell’s field theory have mathematically equivalent dual versions. The dual versions arise from an identity relating observer time to proper time as a contact transformation on configuration space, which leaves (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  10.  58
    Relativistic quantum mechanics of spin-0 and spin-1 bosons.Partha Ghose - 1996 - Foundations of Physics 26 (11):1441-1455.
    It is shown that below the threshold of pair creation, a consistent quantum mechanical interpretation of relativistic spin-0 and spin-1 particles (both massive and mussless) ispossible based an the Hamiltonian-Schrödinger form of the firstorder Kemmer equation together with a first-class constraint. The crucial element is the identification of a conserved four-vector current associated with the equation of motion, whose time component is proportional to the energy density which is constrainedto be positive definite for allsolutions. Consequently, the antiparticles must (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  11.  33
    Spin-Statistics Connection for Relativistic Quantum Mechanics.A. F. Bennett - 2015 - Foundations of Physics 45 (4):370-381.
    The spin-statistics connection has been proved for nonrelativistic quantum mechanics . The proof is extended here to the relativistic regime using the parametrized Dirac equation. A causality condition is not required.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12.  90
    Axiomatic foundations of non-relativistic quantum mechanics: A realistic approach.S. E. Perez Bergliaffa, Gustavo E. Romero & H. Vucetich - 1993 - International Journal of Theoretical Physics 32 (9):1507-1522.
    A realistic axiomatic formulation of nonrelativistic quantum mechanics for a single microsystem with spin is presented, from which the most important theorems of the theory can be deduced. In comparison with previous formulations, the formal aspect has been improved by the use of certain mathematical theories, such as the theory of equipped spaces, and group theory. The standard formalism is naturally obtained from the latter, starting from a central primitive concept: the Galilei group.
    Direct download  
     
    Export citation  
     
    Bookmark   10 citations  
  13. An Analogy for the Relativistic Quantum Mechanics through a Model of De Broglie Wave-covariant Ether.Mohammed Sanduk - 2018 - International Journal of Quantum Foundations 4 (2):173 - 198.
    Based on de Broglie’s wave hypothesis and the covariant ether, the Three Wave Hypothesis (TWH) has been proposed and developed in the last century. In 2007, the author found that the TWH may be attributed to a kinematical classical system of two perpendicular rolling circles. In 2012, the author showed that the position vector of a point in a model of two rolling circles in plane can be transformed to a complex vector under a proposed effect of partial observation. In (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  14.  32
    Entanglement and disentanglement in relativistic quantum mechanics.Jeffrey A. Barrett - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (2):168-174.
  15. Stochastic microcausality in relativistic quantum mechanics.D. P. Greenwood & E. Prugovečki - 1984 - Foundations of Physics 14 (9):883-906.
    A recently formulated concept of stochastic localizability is shown to be consistent with a concept of stochastic microcausality, which avoids the conclusions of Hegerfeldt's no-go theorem as to the inconsistency of sharp localizability of quantum particles and Einstein causality. The proposed localizability on quantum space-time is shown to lead to strict asymptotic causality. For finite time evolutions, upper bounds on propagation to the exterior of stochastic light cones are derived which show that the resulting probabilities are too small (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  16.  25
    Hyperplane dependence in relativistic quantum mechanics.Gordon N. Fleming & Harry Bennett - 1989 - Foundations of Physics 19 (3):231-267.
    Through the explicit introduction of hyperplane dependence as a form of relativistic dynamical evolution, we construct a manifestly covariant description of a single positive energy particle interacting with any one of a large class of “moving” external potentials. In1+1 dimensions, the simplified mathematics allows us to display a number of general properties of solutions to the equations of motion for evolution on hyperplanes.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  17.  47
    Dirac's aether in relativistic quantum mechanics.Nicola Cufaro Petroni & Jean Pierre Vigier - 1983 - Foundations of Physics 13 (2):253-286.
    The introduction by Dirac of a new aether model based on a stochastic covariant distribution of subquantum motions (corresponding to a “vacuum state” alive with fluctuations and randomness) is discussed with respect to the present experimental and theoretical discussion of nonlocality in EPR situations. It is shown (1) that one can deduce the de Broglie waves as real collective Markov processes on the top of Dirac's aether; (2) that the quantum potential associated with this aether's modification, by the presence (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  26
    Lawrence P. Horwitz: Relativistic Quantum Mechanics: Springer, Dordrecht, 2015.Donald Reed - 2017 - Foundations of Physics 47 (11):1498-1502.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19. From Electromagnetism to Relativistic Quantum Mechanics.W. A. Rodrigues Jr & J. Vaz Jr - 1998 - Foundations of Physics 28 (5):789-814.
    We study the relationship between Maxwell and Dirac equations for a class of solutions of Maxwell equations that can represent purely electromagnetic particles.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  20.  17
    Relational Quantum Mechanics, quantum relativism, and the iteration of relativity.Timotheus Riedel - 2024 - Studies in History and Philosophy of Science Part A 104 (C):109-118.
    The idea that the dynamical properties of quantum systems are invariably relative to other systems has recently regained currency. Using Relational Quantum Mechanics (RQM) for a case study, this paper calls attention to a question that has been underappreciated in the debate about quantum relativism: the question of whether relativity iterates. Are there absolute facts about the properties one system possesses relative to a specified reference, or is this again a relative matter, and so on? It (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  14
    Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics.Massimo Tessarotto & Claudio Cremaschini - 2016 - Foundations of Physics 46 (8):1022-1061.
    In this paper a new trajectory-based representation to non-relativistic quantum mechanics is formulated. This is ahieved by generalizing the notion of Lagrangian path which lies at the heart of the deBroglie-Bohm “ pilot-wave” interpretation. In particular, it is shown that each LP can be replaced with a statistical ensemble formed by an infinite family of stochastic curves, referred to as generalized Lagrangian paths. This permits the introduction of a new parametric representation of the Schrödinger equation, denoted as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  22.  60
    On the interpretation of the relativistic quantum mechanics with invariant evolution parameter.Matej Pavšič - 1991 - Foundations of Physics 21 (9):1005-1019.
    The relativistic quantum mechanics with Lorentz-invariant evolution parameter and indefinite mass is a very elegant theory. But it cannot be derived by quantizing the usual classical relativity in which there is the mass-shell constraint. In this paper the classical theory is modified so that it remains Lorentz invariant, but the constraint disappears; mass is no longer fixed—it is an arbitrary constant of motion. The quantization of this unconstrained theory gives the relativistic quantum mechanics in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  23.  99
    In Defense of Dogma: Why There Cannot Be a Relativistic Quantum Mechanical Theory of (Localizable) Particles.David Malament - 1996 - In R. Clifton (ed.), Perspectives on Quantum Reality. Kluwer Academic Publishers. pp. 35–136.
  24. The (meta)metaphysics of science: the case of non-relativistic quantum mechanics.Raoni Wohnrath Arroyo & Jonas R. B. Arenhart - 2022 - Kriterion – Journal of Philosophy 63 (152):275-296.
    Traditionally, being a realist about something means believing in the independent existence of that something. In this line of thought, a scientific realist is someone who believes in the objective existence of the entities postulated by our best scientific theories. In metaphysical terms, what does that mean? In ontological terms, i.e., in terms of what exists, scientific realism can be understood as involving the adoption of a scientifically informed ontology. But according to some philosophers, a realistic attitude must go beyond (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  25.  51
    The transformation properties of world lines in relativistic quantum mechanical Hamiltonian models.James A. Lock - 1982 - Foundations of Physics 12 (8):743-757.
    The supposition of the manifest covariance of average trajectory world lines is violated in Hamiltonian formulations of relativistic quantum mechanics. This is due to the nonlinear appearance of particle dynamical variable operators in the Heisenberg picture boosted position, velocity, and momentum operators. The magnitude of this deviation from world line manifest covariance is found to be exceedingly small for a number of common time of flight experiments.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  26.  60
    Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics.David Saad, L. P. Horwitz & R. I. Arshansky - 1989 - Foundations of Physics 19 (10):1125-1149.
    Gauge invariance of a manifestly covariant relativistic quantum theory with evolution according to an invariant time τ implies the existence of five gauge compensation fields, which we shall call pre-Maxwell fields. A Lagrangian which generates the equations of motion for the matter field (coinciding with the Schrödinger type quantum evolution equation) as well as equations, on a five-dimensional manifold, for the gauge fields, is written. It is shown that τ integration of the equations for the pre-Maxwell fields (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  27.  57
    Relation Between Relativistic and Non-Relativistic Quantum Mechanics as Integral Transformation.R. M. Mir-Kasimov - 2002 - Foundations of Physics 32 (4):607-626.
    A formulation of quantum mechanics (QM) in the relativistic configurational space (RCS) is considered. A transformation connecting the non-relativistic QM and relativistic QM (RQM) has been found in an explicit form. This transformation is a direct generalization of the Kontorovich–Lebedev transformation. It is shown also that RCS gives an example of non-commutative geometry over the commutative algebra of functions.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  28. The relational blockworld interpretation of non-relativistic quantum mechanics.W. M. Stuckey, Michael Silberstein & Michael Cifone - unknown
    We introduce a new interpretation of non-relativistic quantum mechanics (QM) called Relational Blockworld (RBW). We motivate the interpretation by outlining two results due to Kaiser, Bohr, Ulfeck, Mottelson, and Anandan, independently. First, the canonical commutation relations for position and momentum can be obtained from boost and translation operators,respectively, in a spacetime where the relativity of simultaneity holds. Second, the QM density operator can be obtained from the spacetime symmetry group of the experimental configuration exclusively. We show how (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  29. An argument for 4d blockworld from a geometric interpretation of non-relativistic quantum mechanics.Michael Silberstein, W. M. Stuckey & Michael Cifone - unknown
    We use a new, distinctly “geometrical” interpretation of non-relativistic quantum mechanics (NRQM) to argue for the fundamentality of the 4D blockworld ontology. We argue for a geometrical interpretation whose fundamental ontology is one of spacetime relations as opposed to constructive entities whose time-dependent behavior is governed by dynamical laws. Our view rests on two formal results: Kaiser (1981 & 1990), Bohr & Ulfbeck (1995) and Anandan, (2003) showed independently that the Heisenberg commutation relations of NRQM follow from (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  30. Trajectories and causal phase-space approach to relativistic quantum mechanics.P. R. Holland, A. Kyprianidis & J. P. Vigier - 1987 - Foundations of Physics 17 (5):531-548.
    We analyze phase-space approaches to relativistic quantum mechanics from the viewpoint of the causal interpretation. In particular, we discuss the canonical phase space associated with stochastic quantization, its relation to Hilbert space, and the Wigner-Moyal formalism. We then consider the nature of Feynman paths, and the problem of nonlocality, and conclude that a perfectly consistent relativistically covariant interpretation of quantum mechanics which retains the notion of particle trajectory is possible.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  24
    Email: Unruh@ physics. Ubc. ca.is Quantum Mechanics Non-Local - 2002 - In T. Placek & J. Butterfield (eds.), Non-Locality and Modality. Kluwer Academic Publishers.
  32.  12
    The Common Logic of Quantum Universe—Part I: The Case of Non-relativistic Quantum Mechanics.Massimo Tessarotto & Claudio Cremaschini - 2022 - Foundations of Physics 52 (1):1-38.
    One of the most challenging and fascinating issue in mathematical and theoretical physics concerns the possibility of identifying the logic underlying the so-called quantum universe, i.e., Quantum Mechanics and Quantum Gravity. Besides the sheer difficulty of the problem, inherent in the actual formulation of Quantum Mechanics—and especially of Quantum Gravity—to be used for such a task, a crucial aspect lies in the identification of the appropriate axiomatic logical proposition calculus to be associated to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  7
    On the Equivalence Principle and Relativistic Quantum Mechanics.Maciej Trzetrzelewski - 2020 - Foundations of Physics 50 (11):1253-1269.
    Einstein’s Equivalence Principle implies that the Lorentz force equation can be derived from a geodesic equation by imposing a certain condition on the electromagnetic potential. We analyze the quantization of that constraint and find the corresponding differential equations for the phase of the wave function. We investigate these equations in the case of Coulomb potential and show that physically acceptable solutions do not exist. This result signals an inconsistency between Einstein’s Equivalence Principle and Relativistic Quantum Mechanics at (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  46
    Contractions of space-time groups and relativistic quantum mechanics.P. L. Huddleston, M. Lorente & P. Roman - 1975 - Foundations of Physics 5 (1):75-87.
    The relation of the conformal group to various earlier proposed relativistic quantum mechanical dynamical groups (and other related groups) is studied in the framework of projective geometry, by explicitly constructing the contractions of the six-dimensional coordinate transformations. Five-dimensional realizations are then derived. An attempt is made to improve our physical insight through geometry.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  35.  43
    Quantum mechanics of relativistic spinless particles.John R. Fanchi & R. Eugene Collins - 1978 - Foundations of Physics 8 (11-12):851-877.
    A relativistic one-particle, quantum theory for spin-zero particles is constructed uponL 2(x, ct), resulting in a positive definite spacetime probability density. A generalized Schrödinger equation having a Hermitian HamiltonianH onL 2(x, ct) for an arbitrary four-vector potential is derived. In this formalism the rest mass is an observable and a scalar particle is described by a wave packet that is a superposition of mass states. The requirements of macroscopic causality are shown to be satisfied by the most probable (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  36.  9
    A Non-relativistic Approach to Relativistic Quantum Mechanics: The Case of the Harmonic Oscillator.Luis A. Poveda, Luis Grave de Peralta, Jacob Pittman & Bill Poirier - 2022 - Foundations of Physics 52 (1):1-20.
    A recently proposed approach to relativistic quantum mechanics is applied to the problem of a particle in a quadratic potential. The methods, both exact and approximate, allow one to obtain eigenstate energy levels and wavefunctions, using conventional numerical eigensolvers applied to Schrödinger-like equations. Results are obtained over a nine-order-of-magnitude variation of system parameters, ranging from the non-relativistic to the ultrarelativistic limits. Various trends are analyzed and discussed—some of which might have been easily predicted, others which may (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  37.  44
    On the electromagnetic interaction in relativistic quantum mechanics.L. P. Horwitz - 1984 - Foundations of Physics 14 (10):1027-1046.
    A fundamental problem in the construction of local electromagnetic interactions in the framework of relativistic wave equations of Klein-Gordon or Dirac type is discussed, and shown to be resolved in a relativistic quantum theory of events described by functions in a Hilbert space on the manifold of space-time. The relation, abstracted from the structure of the electromagnetic current, between sequences of events, parametrized by an evolution parameter τ (“historical time”), and the commonly accepted notion of particles is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  38.  55
    Relativistic hadronic mechanics: Nonunitary, axiom-preserving completion of relativistic quantum mechanics.Ruggero Maria Santilli - 1997 - Foundations of Physics 27 (5):625-729.
    The most majestic scientific achievement, of this century in mathematical beauty, axiomatic consistency, and experimental verifications has been special relativity with its unitary structure at the operator level, and canonical structure at the classical levels, which has turned out to be exactly valid for point particles moving in the homogenenous and isotropic vacuum (exterior dynamical problems). In recent decades a number of authors have studied nonunitary and noncanonical theories, here generally calleddeformations for the representation of broader conditions, such as extended (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  44
    On Epstein’s Trajectory Model of Non-Relativistic Quantum Mechanics.Ward Struyve - 2010 - Foundations of Physics 40 (11):1700-1711.
    In 1952 Bohm presented a theory about non-relativistic point-particles that move deterministically along trajectories and showed how it reproduces the predictions of standard quantum theory. This theory was actually presented before by de Broglie in 1926, but Bohm’s particular formulation of the theory inspired Epstein to come up with a different trajectory model. The aim of this paper is to examine the empirical predictions of this model. It is found that the trajectories in this model are in general (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  40.  42
    Description of Unstable Systems in Relativistic Quantum Mechanics in the Lax-Phillips Theory.L. P. Horwitz & Y. Strauss - 1998 - Foundations of Physics 28 (10):1607-1616.
    We discuss some of the experimental motivation for the need for semigroup decay laws and the quantum Lax-Phillips theory of scattering and unstable systems. In this framework, the decay of an unstable system is described by a semigroup. The spectrum of the generator of the semigroup corresponds to the singularities of the Lax-Phillips S-matrix. In the case of discrete (complex) spectrum of the generator of the semigroup, associated with resonances, the decay law is exactly exponential. The states corresponding to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  41.  35
    Particles vs. events: The concatenated structure of world lines in relativistic quantum mechanics[REVIEW]R. Arshansky, L. P. Horwitz & Y. Lavie - 1983 - Foundations of Physics 13 (12):1167-1194.
    The dynamical equations of relativistic quantum mechanics prescribe the motion of wave packets for sets of events which trace out the world lines of the interacting particles. Electromagnetic theory suggests thatparticle world line densities be constructed from concatenation of event wave packets. These sequences are realized in terms of conserved probability currents. We show that these conserved currents provide a consistent particle and antiparticle interpretation for the asymptotic states in scattering processes. The relation between current conservation and (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  42.  7
    Quantum Mechanics Based on an Extended Least Action Principle and Information Metrics of Vacuum Fluctuations.Jianhao M. Yang - 2024 - Foundations of Physics 54 (3):1-31.
    We show that the formulations of non-relativistic quantum mechanics can be derived from an extended least action principle. The principle can be considered as an extension of the least action principle from classical mechanics by factoring in two assumptions. First, the Planck constant defines the minimal amount of action a physical system needs to exhibit during its dynamics in order to be observable. Second, there is constant vacuum fluctuation along a classical trajectory. A novel method is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  43.  94
    Quantum mechanical evolution of relativistic particles.Philippe Droz-Vincent - 1995 - Foundations of Physics 25 (1):67-90.
    This is a tentative theory of quantum measurement performed on particles with unspecified mass. For such a particle, the center of the wave packet undergoes a classical motion which is a precious guide to our approach. The framework is manifestly covariant and a priori nonlocal. It allows for describing an irreversible process which lasts during a nonvanishing lapse of time. The possibility to measure a dynamical variable in an arbitrary slate is discussed. Our picture is most satisfactory if we (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Underdeterminations of Consciousness in Quantum Mechanics.Lauro de Matos Nunes Filho & Raoni Wohnrath Arroyo - 2018 - Principia: An International Journal of Epistemology 22 (2):321-337.
    Metaphysical underdetermination arises when we are not able to decide, through purely theoretical criteria, between competing interpretations of scientific theories with different metaphysical commitments. This is the case in which non-relativistic quantum mechanics (QM) finds itself in. Among several available interpretations, there is the one that states that the interaction with the conscious mind of a human observer causes a change in the dynamics of quantum objects undergoing from indefinite to definite states. In this paper, we (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  45.  90
    Differentiable probabilities: A new viewpoint on spin, gauge invariance, gauge fields, and relativistic quantum mechanics[REVIEW]R. Eugene Collins - 1996 - Foundations of Physics 26 (11):1469-1527.
    A new approach to developing formulisms of physics based solely on laws of mathematics is presented. From simple, classical statistical definitions for the observed space-time position and proper velocity of a particle having a discrete spectrum of internal states we derive u generalized Schrödinger equation on the space-time manifold. This governs the evolution of an N component wave function with each component square integrable over this manifold and is structured like that for a charged particle in an electromagnetic field but (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46. Time, quantum mechanics, and tense.Simon Saunders - 1996 - Synthese 107 (1):19 - 53.
    The relational approach to tense holds that the now, passage, and becoming are to be understood in terms of relations between events. The debate over the adequacy of this framework is illustrated by a comparative study of the sense in which physical theories, (in)deterministic and (non)relativistic, can lend expression to the metaphysics at issue. The objective is not to settle the matter, but to clarify the nature of this metaphysics and to establish that the same issues are at stake (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  47.  9
    Relativistic Pilot-Wave Theories as the Rational Completion of Quantum Mechanics and Relativity.Valia Allori - 2023 - In Andrea Oldofredi (ed.), Guiding Waves In Quantum Mechanics: 100 Years of de Broglie-Bohm Pilot-Wave Theory. Oxford University Press.
    Einstein thought that quantum mechanics was incomplete because it was nonlocal. In this paper I argue instead that quantum theory is incomplete, even if it is nonlocal, and that relativity is incomplete because its minimal spatiotemporal structure cannot naturally accommodate such nonlocality. So, I show that relativistic pilot-wave theories are the rational completion of quantum mechanics as well as relativity: they provide a spatiotemporal ontology of particles, as well as a spatiotemporal structure able to (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  48.  14
    Relativistic equations in quantum mechanics.Eugene P. Wigner - 1973 - In Jagdish Mehra (ed.), The physicist's conception of nature. Boston,: Reidel. pp. 320--330.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Quantum mechanics as a consistency condition on initial and final boundary conditions.David John Miller - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):767-781.
    If the block universe view is correct, the future and the past have similar status and one would expect physical theories to involve final as well as initial boundary conditions. A plausible consistency condition between the initial and final boundary conditions in non-relativistic quantum mechanics leads to the idea that the properties of macroscopic quantum systems, relevantly measuring instruments, are uniquely determined by the boundary conditions. An important element in reaching that conclusion is that preparations and (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  50.  56
    Quantum Mechanics as an Emergent Property of Ergodic Systems Embedded in the Zero-point Radiation Field.L. de la Peña, A. Valdés-Hernández & A. M. Cetto - 2009 - Foundations of Physics 39 (11):1240-1272.
    The present paper reveals (non-relativistic) quantum mechanics as an emergent property of otherwise classical ergodic systems embedded in a stochastic vacuum or zero-point radiation field (zpf). This result provides a theoretical basis for understanding recent numerical experiments in which a statistical analysis of an atomic electron interacting with the zpf furnishes the quantum distribution for the ground state of the H atom. The action of the zpf on matter is essential within the present approach, but it (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
1 — 50 / 1000