Results for 'RNA regulons'

584 found
Order:
  1.  22
    RNA assemblages orchestrate complex cellular processes.Finn Cilius Nielsen, Heidi Theil Hansen & Jan Christiansen - 2016 - Bioessays 38 (7):674-681.
    Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA‐binding proteins containing low‐complexity sequences are prone to generate liquid droplets via liquid‐liquid phase separation, and in this way create cytoplasmic assemblages of functionally related mRNAs. In a recent iCLIP study, we showed that the Drosophila RNA‐binding protein Imp, which exhibits a C‐terminal low‐complexity sequence, increases the formation of F‐actin by binding to 3′ untranslated (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  2.  13
    Cytoplasmic mRNPs revisited: Singletons and condensates.Àngels Mateu-Regué, Finn Cilius Nielsen & Jan Christiansen - 2020 - Bioessays 42 (12):2000097.
    Cytoplasmic messenger ribonucleoprotein particles (mRNPs) represent the cellular transcriptome, and recent data have challenged our current understanding of their architecture, transport, and complexity before translation. Pre‐translational mRNPs are composed of a single transcript, whereas P‐bodies and stress granules are condensates. Both pre‐translational mRNPs and actively translating mRNPs seem to adopt a linear rather than a closed‐loop configuration. Moreover, assembly of pre‐translational mRNPs in physical RNA regulons is an unlikely event, and co‐regulated translation may occur locally following extracellular cues. We (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  7
    ʻAql-i surkh: sharḥ va taʼvīl-i dāstānʹhā-yi ramzī-i Suhravardī.Taqī Pūrnāmdārīyān - 2011 - Tihrān: Intishārāt-i Sukhan. Edited by Yaḥyá ibn Ḥabash Suhrawardī.
  4. The double solution of the theory of relativity.Julius Järnåker - 1970 - [Uppsala,: Almqvist & Wiksell.
     
    Export citation  
     
    Bookmark  
  5. Cad fúinne, mar sin?: what of us, then?Colm Ó Tórna - 2019 - [Dublin]: Foilsithe ag Teangscéal.
     
    Export citation  
     
    Bookmark  
  6. Quo Vanis, a Chreidmhigh?Colm Ó Tórna - 2015 - Binn Eadair, Baile Átha Cliath: Coiscéim.
     
    Export citation  
     
    Bookmark  
  7.  45
    Are RNA Viruses Vestiges of an RNA World?Susie Fisher - 2010 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 41 (1):121-141.
    This paper follows the circuitous path of theories concerning the origins of viruses from the early years of the twentieth century until the present, considering RNA viruses in particular. I focus on three periods during which new understandings of the nature of viruses guided the construction and reconstruction of origin hypotheses. During the first part of the twentieth century, viruses were mostly viewed from within the framework of bacteriology and the discussion of origin centered on the “degenerative” or the “retrograde (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  23
    Small RNA research and the scientific repertoire: a tale about biochemistry and genetics, crops and worms, development and disease.Sophie Juliane Veigl - 2021 - History and Philosophy of the Life Sciences 43 (1):1-25.
    The discovery of RNA interference in 1998 has made a lasting impact on biological research. Identifying the regulatory role of small RNAs changed the modes of molecular biological inquiry as well as biologists' understanding of genetic regulation. This article examines the early years of small RNA biology's success story. I query which factors had to come together so that small RNA research came into life in the blink of an eye. I primarily look at scientific repertoires as facilitators of rapid (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  9.  43
    RNA editing: a driving force for adaptive evolution?Willemijn M. Gommans, Sean P. Mullen & Stefan Maas - 2009 - Bioessays 31 (10):1137-1145.
    Genetic variability is considered a key to the evolvability of species. The conversion of an adenosine (A) to inosine (I) in primary RNA transcripts can result in an amino acid change in the encoded protein, a change in secondary structure of the RNA, creation or destruction of a splice consensus site, or otherwise alter RNA fate. Substantial transcriptome and proteome variability is generated by A‐to‐I RNA editing through site‐selective post‐transcriptional recoding of single nucleotides. We posit that this epigenetic source of (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Régulons et systèmes.M. Lubanski - 1985 - Studia Philosophiae Christianae 21 (2):25-37.
    No categories
     
    Export citation  
     
    Bookmark  
  11.  32
    Does RNA editing compensate for Alu invasion of the primate genome?Erez Y. Levanon & Eli Eisenberg - 2015 - Bioessays 37 (2):175-181.
    One of the distinctive features of the primate genome is the Alu element, a repetitive short interspersed element, over a million highly similar copies of which account for >10% of the genome. A direct consequence of this feature is that primates' transcriptome is highly enriched in long stable dsRNA structures, the preferred target of adenosine deaminases acting on RNAs (ADARs), which are the enzymes catalyzing A‐to‐I RNA editing. Indeed, A‐to‐I editing by ADARs is extremely abundant in primates: over a hundred (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  12.  68
    RNA regulation of epigenetic processes.John S. Mattick, Paulo P. Amaral, Marcel E. Dinger, Tim R. Mercer & Mark F. Mehler - 2009 - Bioessays 31 (1):51-59.
    There is increasing evidence that dynamic changes to chromatin, chromosomes and nuclear architecture are regulated by RNA signalling. Although the precise molecular mechanisms are not well understood, they appear to involve the differential recruitment of a hierarchy of generic chromatin modifying complexes and DNA methyltransferases to specific loci by RNAs during differentiation and development. A significant fraction of the genome-wide transcription of non-protein coding RNAs may be involved in this process, comprising a previously hidden layer of intermediary genetic information that (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  13.  16
    RNA processing in prokaryotic cells.David Apirion & Andras Miczak - 1993 - Bioessays 15 (2):113-120.
    RNA processing in Escherichia coli and some of its phages is reviewed here, with primary emphasis on rRNA and tRNA processing. Three enzymes, RNase III, RNase E and RNase P are responsible for most of the primary endonucleolytic RNA processing events. The first two are proteins, while RNase P is a ribozyme. These three enzymes have unique functions and in their absence, the cleavage events they catalyze are not performed. On the other hand a relatively large number of exonucleases participate (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  14. RNA’s Role in the Origins of Life: An Agentic ‘Manager’, or Recipient of ‘Off-loaded’ Constraints?John E. Stewart - 2021 - Biosemiotics 14 (3):643-650.
    In his Target Article, Terrence Deacon develops simple models that assist in understanding the role of RNA in the origins of life. However, his models fail to adequately represent an important evolutionary dynamic. Central to this dynamic is the selection that impinges on RNA molecules in the context of their association with proto-metabolisms. This selection shapes the role of RNA in the emergence of life. When this evolutionary dynamic is appropriately taken into account, it predicts a role for RNA that (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  28
    RNAs, Phase Separation, and Membrane‐Less Organelles: Are Post‐Transcriptional Modifications Modulating Organelle Dynamics?Aleksej Drino & Matthias R. Schaefer - 2018 - Bioessays 40 (12):1800085.
    Membranous organelles allow sub‐compartmentalization of biological processes. However, additional subcellular structures create dynamic reaction spaces without the need for membranes. Such membrane‐less organelles (MLOs) are physiologically relevant and impact development, gene expression regulation, and cellular stress responses. The phenomenon resulting in the formation of MLOs is called liquid–liquid phase separation (LLPS), and is primarily governed by the interactions of multi‐domain proteins or proteins harboring intrinsically disordered regions as well as RNA‐binding domains. Although the presence of RNAs affects the formation and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  16.  31
    RNA as the substrate for epigenome‐environment interactions.John S. Mattick - 2010 - Bioessays 32 (7):548-552.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  17.  26
    Noncoding RNA‐guided recruitment of transcription factors: A prevalent but undocumented mechanism?Nara Lee & Joan A. Steitz - 2015 - Bioessays 37 (9):936-941.
    High‐fidelity binding of transcription factors (TFs) to DNA target sites is fundamental for proper regulation of cellular processes, as well as for the maintenance of cell identity. Recognition of cognate binding motifs in the genome is attributed by and large to the DNA binding domains of TFs. As an additional mode of conferring binding specificity, noncoding RNAs (ncRNAs) have been proposed to assist associated TFs in finding their binding sites by interacting with either DNA or RNA in the vicinity of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  8
    RNA structure: Merging chemistry and genomics for a holistic perspective.Miles Kubota, Dalen Chan & Robert C. Spitale - 2015 - Bioessays 37 (10):1129-1138.
    The advent of deep sequencing technology has unexpectedly advanced our structural understanding of molecules composed of nucleic acids. A significant amount of progress has been made recently extrapolating the chemical methods to probe RNA structure into sequencing methods. Herein we review some of the canonical methods to analyze RNA structure, and then we outline how these have been used to probe the structure of many RNAs in parallel. The key is the transformation of structural biology problems into sequencing problems, whereby (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  19.  9
    Bacterial RNA polymerase — the ultimate metabolic sensor?Andrew A. Travers - 1988 - Bioessays 8 (6):190-193.
    The RNA polymerase of Enterobacteria senses the physiological state of the cell by interaction with signal molecules such as ppGpp and responds by altering the rate of initiation of rRNA and tRNA species so as to limit or enhance the capacity for further growth.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  20.  20
    When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a Difference.Yumeng Wang & Han Liang - 2018 - Bioessays 40 (2):1700188.
    RNA editing is a major post-transcriptional mechanism that changes specific nucleotides at the RNA level. The most common RNA editing type in humans is adenosine to inosine editing, which is mediated by ADAR enzymes. RNA editing events can not only change amino acids in proteins, but also affect the functions of non-coding RNAs such as miRNAs. Recent studies have characterized thousands of miRNA RNA editing events across different cancer types. Importantly, individual cases of miRNA editing have been reported to play (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  17
    RNA as a catalyst: Natural and designed ribozymes.Uwe Von Ahsen & Renée Schroeder - 1993 - Bioessays 15 (5):299-307.
    RNA can catalyse chemical reactions through its ability to fold into complex three‐dimensional structures and to specifically bind small molecules and divalent metal ions. The 2′‐hydroxyl groups of the ribose moieties contribute to this exceptional reactivity of RNA, compared to DNA. RNA is not only able to catalyse phosphate ester transfer reactions in ribonucleic acids, but can also show aminoacyl esterase activity, and is probably able to promote peptide bond formation. Bearing its potential for functioning both as a genome and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  22.  18
    RNA‐protein interactions: Central players in coordination of regulatory networks.Alexandros Armaos, Elsa Zacco, Natalia Sanchez de Groot & Gian Gaetano Tartaglia - 2021 - Bioessays 43 (2):2000118.
    Changes in the abundance of protein and RNA molecules can impair the formation of complexes in the cell leading to toxicity and death. Here we exploit the information contained in protein, RNA and DNA interaction networks to provide a comprehensive view of the regulation layers controlling the concentration‐dependent formation of assemblies in the cell. We present the emerging concept that RNAs can act as scaffolds to promote the formation ribonucleoprotein complexes and coordinate the post‐transcriptional layer of gene regulation. We describe (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  23.  19
    Regulation of the methionine regulon in Escherichia coli.Robert Shoeman, Betty Redfield, Timothy Coleman, Nathan Brot, Herbert Weissbach, Ronald C. Greene, Albert A. Smith, Isabelle Saint-Girons, Mario M. Zakin & Georges N. Cohen - 1985 - Bioessays 3 (5):210-213.
    The genes involved in methionine biosynthesis are scattered throughout the Escherichia coli chromosome and are controlled in a similar but not coordinated manner. The product of the metJ gene and S‐adenosylmethionine are involved in the repression of this ‘regulon’.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  24.  26
    Noncoding RNAs and chronic inflammation: Micro‐managing the fire within.Margaret Alexander & Ryan M. O'Connell - 2015 - Bioessays 37 (9):1005-1015.
    Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age‐associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  25.  11
    RNA at DNA Double‐Strand Breaks: The Challenge of Dealing with DNA:RNA Hybrids.Judit Domingo-Prim, Franziska Bonath & Neus Visa - 2020 - Bioessays 42 (5):1900225.
    RNA polymerase II is recruited to DNA double‐strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage‐induced long non‐coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA‐like molecules or degraded by different ribonucleases. They can also form double‐stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  26.  18
    RNA editing: Exploring one mode with apolipoprotein B mRNA.Lawrence Chan - 1993 - Bioessays 15 (1):33-41.
    RNA editing is a newly described genetic phenomenon. It encompasses widely different molecular mechanisms and events. According to the specific RNA modification, RNA editing can be broadly classified into six major types. Type II RNA editing occurs in plants and mammals; it consists predominantly in cytidine to uridine conversions resulting from deamination/transamination or transglycosylation, although in plants other mechanisms have not been excluded. Apolipoprotein B mRNA editing is the only well‐documented editing phenomenon in mammals. It is an intranuclear event that (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  27.  9
    Small mitochondrial RNAs as mediators of nuclear gene regulation, and potential implications for human health.Andrea Pozzi & Damian K. Dowling - 2021 - Bioessays 43 (6):2000265.
    Much research has focused on the effects of pathogenic mitochondrial mutations on health. Notwithstanding, the mechanisms regulating the link between these mutations and their effects remain elusive in several cases. Here, we propose that certain mitochondrial mutations may disrupt function of a set of mitochondrial‐transcribed small RNAs, perturbing communication between mitochondria and nucleus, leading to disease. Our hypothesis synthesises two lines of supporting evidence. First, several mitochondrial mutations cannot be directly linked to effects on energy production or protein synthesis. Second, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28. That is life: communicating RNA networks from viruses and cells in continuous interaction.Guenther Witzany - 2019 - Annals of the New York Academy of Sciences:1-16.
    All the conserved detailed results of evolution stored in DNA must be read, transcribed, and translated via an RNAmediated process. This is required for the development and growth of each individual cell. Thus, all known living organisms fundamentally depend on these RNA-mediated processes. In most cases, they are interconnected with other RNAs and their associated protein complexes and function in a strictly coordinated hierarchy of temporal and spatial steps (i.e., an RNA network). Clearly, all cellular life as we know it (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  29.  17
    RNA as the substrate for epigenome‐environment interactions.John S. Mattick - 2010 - Bioessays 32 (7):642-642.
  30.  20
    The RNA dreamtime.Charles G. Kurland - 2010 - Bioessays 32 (10):866-871.
    Modern cells present no signs of a putative prebiotic RNA world. However, RNA coding is not a sine qua non for the accumulation of catalytic polypeptides. Thus, cellular proteins spontaneously fold into active structures that are resistant to proteolysis. The law of mass action suggests that binding domains are stabilized by specific interactions with their substrates. Random polypeptide synthesis in a prebiotic world has the potential to initially produce only a very small fraction of polypeptides that can fold spontaneously into (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  16
    Hypothesis: RNA polymerase: Structural determinat of the chromatin loop and the chromosome.Peter R. Cook - 1994 - Bioessays 16 (6):425-430.
    Current models for RNA synthesis involve an RNA polymerase that tracks along a static template. However, research on chromatin loops suggests that the template slides past a stationary polymerase; individual polymerases tie the chromatin fibre into loops and clusters of polymerases determine the basic structure of the interphase and metaphase chromosome. RNA polymerase is then both a player and a manager of the chromosome loop.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  22
    Long non‐coding RNA modifies chromatin.Alka Saxena & Piero Carninci - 2011 - Bioessays 33 (11):830-839.
    Common themes are emerging in the molecular mechanisms of long non‐coding RNA‐mediated gene repression. Long non‐coding RNAs (lncRNAs) participate in targeted gene silencing through chromatin remodelling, nuclear reorganisation, formation of a silencing domain and precise control over the entry of genes into silent compartments. The similarities suggest that these are fundamental processes of transcription regulation governed by lncRNAs. These findings have paved the way for analogous investigations on other lncRNAs and chromatin remodelling enzymes. Here we discuss these common mechanisms and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33.  44
    Modelling 'evo‐devo' with RNA.Walter Fontana - 2002 - Bioessays 24 (12):1164-1177.
    The folding of RNA sequences into secondary structures is a simple yet biophysically grounded model of a genotype–phenotype map. Its computational and mathematical analysis has uncovered a surprisingly rich statistical structure characterized by shape space covering, neutral networks and plastogenetic congruence. I review these concepts and discuss their evolutionary implications. BioEssays 24:1164–1177, 2002. © 2002 Wiley‐Periodicals, Inc.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  34.  4
    RNAs templating chromatin structure for dosage compensation in animals.Anton Wutz - 2003 - Bioessays 25 (5):434-442.
    The role of RNA as a messenger in the expression of the genome has been long appreciated, but its functions in regulating chromatin and chromosome structure are no less interesting. Recent results have shown that small RNAs guide chromatin‐modifying complexes to chromosomal regions in a sequence‐specific manner to elicit transcriptional repression. However, sequence‐specific targeting by means of base pairing seems to be only one mechanism by which RNA is employed for epigenetic regulation. The focus of this review is on large (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  35.  16
    RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent.Terra-Dawn M. Plank & Miles F. Wilkinson - 2018 - Bioessays 40 (1):1700170.
    The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay pathway. Feng et al. now report a new function for UPF1—it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important to define (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  14
    RNA Decay Factor UPF1 Promotes Protein Decay: A Hidden Talent.Terra-Dawn M. Plank & Miles F. Wilkinson - 2018 - Bioessays 40 (1):1700170.
    The RNA-binding protein, UPF1, is best known for its central role in the nonsense-mediated RNA decay pathway. Feng et al. now report a new function for UPF1—it is an E3 ubiquitin ligase that specifically promotes the decay of a key pro-muscle transcription factor: MYOD. UPF1 achieves this through its RING-like domain, which confers ubiquitin E3 ligase activity. Feng et al. provide evidence that the ability of UPF1 to destabilize MYOD represses myogenesis. In the future, it will be important to define (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  37.  16
    RNA folding: Pseudoknots, loops and bulges.Jacqueline R. Wyatt, Joseph D. Puglisi & Ignacio Tinoco - 1989 - Bioessays 11 (4):100-106.
    The three‐dimensional structures adopted by RNA molecules are crucial to their biological functions. The nucleotides of an RNA molecule interact to form characteristic secondary‐structure mctifs. Tertiary interactions orient these secondary‐structure elements with respect to each other to form the functional RNA. Here we describe the basic structural elements with special emphasis on a novel tertiary motif, the pseudoknot.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  5
    Orchestrating ribosomal RNA folding during ribosome assembly.Michaela Oborská-Oplová, Stefan Gerhardy & Vikram Govind Panse - 2022 - Bioessays 44 (8):2200066.
    Construction of the eukaryotic ribosome is a complex process in which a nascent ribosomal RNA (rRNA) emerging from RNA Polymerase I hierarchically folds into a native three‐dimensional structure. Modular assembly of individual RNA domains through interactions with ribosomal proteins and a myriad of assembly factors permit efficient disentanglement of the error‐prone RNA folding process. Following these dynamic events, long‐range tertiary interactions are orchestrated to compact rRNA. A combination of genetic, biochemical, and structural studies is now providing clues into how a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  39.  27
    Impact of RNA–Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5.Rosario Francisco-Velilla, Embarc-Buh Azman & Encarnacion Martinez-Salas - 2019 - Bioessays 41 (4):1800241.
    The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA‐binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA‐binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA–protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40.  40
    The RNA Ontology (RNAO): an ontology for integrating RNA sequence and structure data.Robert Hoehndorf, Colin Batchelor, Thomas Bittner, Michel Dumontier, Karen Eilbeck, Rob Knight, Chris J. Mungall, Jane S. Richardson, Jesse Stombaugh & Eric Westhof - 2011 - Applied ontology 6 (1):53-89.
  41.  59
    The role of regulatory RNA in cognitive evolution.Guy Barry & John S. Mattick - 2012 - Trends in Cognitive Sciences 16 (10):497-503.
    The evolution of the human brain has resulted in the emergence of higher-order cognitive abilities, such as reasoning, planning and social awareness. Although there has been a concomitant increase in brain size and complexity, and component diversification, we argue that RNA regulation of epigenetic processes, RNA editing, and the controlled mobilization of transposable elements have provided the major substrates for cognitive advance. We also suggest that these expanded capacities and flexibilities have led to the collateral emergence of psychiatric fragilities and (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  7
    Messenger RNAs in dendrites: localization, stability, and implications for neuronal function.Mikhail V. Blagosklonny - 1998 - Bioessays 20 (1):70-78.
    In the mammalian central nervous system (CNS), each neuron receives signals from other neurons through numerous synapses located on its cell body and dendrites. Molecules involved in the postsynaptic signaling pathways need to be targeted to the appropriate subcellular domains at the right time during both synaptogenesis and the maintenance of synaptic functions. The presence of messenger RNAs (mRNAs) in dendrites offers a mechanism for synthesizing the appropriate molecules at the right place in response to local extracellular stimuli. Several dendritic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  16
    Discontinuous RNA synthesis through trans‐splicing.Richard Braun - 1986 - Bioessays 5 (5):223-227.
    In eukaryotic cells intron sequences are usually spliced out with a high degree of precision from heterogenous nuclear RNA (hnRNA) to give functional mRNA with exons in their right order. Provided with the right substrates, cell extracts can achieve the same. With exotic substrates, on the other hand, the same extracts can cut exons from one RNA and join them to exons from another RNA, a process termed trans‐splicing. In vivo, RNA trans‐splicing could lead to faulty, but also to novel (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  44.  4
    Branched RNA.Mary Edmonds - 1987 - Bioessays 6 (5):212-216.
    The only RNA molecules known to be branched are circular structures with tails known as lariats that arise during nuclear pre‐mRNA splicing. Lariats accumulate within a large multicomponent particle called a spliceosome that forms upon the addition of unspliced mRNA to nuclear extracts. Recently an RNA molecule has been observed to catalyze branch formation. In this case a single intron of a yeast mitochondrial pre‐mRNA participates in a self‐splicing reaction that results in the accumulation of branched lariats that are processed (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  9
    More than a bystander: RNAs specify multifaceted behaviors of liquid‐liquid phase‐separated biomolecular condensates.Hui Zheng & Hong Zhang - 2024 - Bioessays 46 (3):2300203.
    Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid‐liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid‐like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  7
    The RNA‐binding protein HuD: a regulator of neuronal differentiation, maintenance and plasticity.Julie Deschênes-Furry, Nora Perrone-Bizzozero & Bernard J. Jasmin - 2006 - Bioessays 28 (8):822-833.
    AbstractmRNA stability is increasingly recognized as being essential for controlling the expression of a wide variety of transcripts during neuronal development and synaptic plasticity. In this context, the role of AU‐rich elements (ARE) contained within the 3′ untranslated region (UTR) of transcripts has now emerged as key because of their high incidence in a large number of cellular mRNAs. This important regulatory element is known to significantly modulate the longevity of mRNAs by interacting with available stabilizing or destabilizing RNA‐binding proteins (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  47.  12
    Localized RNAs and their functions.Dali Ding & Howard D. Lipshitz - 1993 - Bioessays 15 (10):651-658.
    The eukaryotic cell is partitioned by membranes into spatially and functionally discrete subcellular organelles. In addition, the cytoplasm itself is partitioned into discrete subregions that carry out specific functions. Such compartmentation can be achieved by localizing proteins and RNAs to different subcellular regions. This review will focus on localized RNAs, with a particular emphasis on RNA localization mechanisms and on the possible biological functions of localization of these RNAs. In recent years, an increasing number of localized RNAs have been identified (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  48.  24
    The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal.Michael Doyle, Lukas Badertscher, Lukasz Jaskiewicz, Stephan Güttinger, Sabine Jurado, Tabea Hugenschmidt, Ulrike Kutay & Witold Filipowicz - unknown
    Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and doublestranded RNA into ~21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. We (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  49. The Non-Coding RNA Ontology : a comprehensive resource for the unification of non-coding RNA biology.Huang Jingshan, Eilbeck Karen, Barry Smith, A. Blake Judith, Dou Dejing, Huang Weili, A. Natale Darren, Ruttenberg Alan, Huan Jun & T. Zimmermann Michael - 2016 - Journal of Biomedical Semantics 7 (1).
    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  50.  1
    Messenger RNAs in dendrites: localization, stability, and implications for neuronal function.Fen-Biao Gao - 1998 - Bioessays 20 (1):70-78.
    In the mammalian central nervous system (CNS), each neuron receives signals from other neurons through numerous synapses located on its cell body and dendrites. Molecules involved in the postsynaptic signaling pathways need to be targeted to the appropriate subcellular domains at the right time during both synaptogenesis and the maintenance of synaptic functions. The presence of messenger RNAs (mRNAs) in dendrites offers a mechanism for synthesizing the appropriate molecules at the right place in response to local extracellular stimuli. Several dendritic (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 584