Results for 'Quantum-to-classical transition'

986 found
Order:
  1.  48
    Remark on a Group-Theoretical Formalism for Quantum Mechanics and the Quantum-to-Classical Transition.J. K. Korbicz & M. Lewenstein - 2007 - Foundations of Physics 37 (6):879-896.
    We sketch a group-theoretical framework, based on the Heisenberg–Weyl group, encompassing both quantum and classical statistical descriptions of unconstrained, non-relativistic mechanical systems. We redefine in group-theoretical terms a kinematical arena and a space of statistical states of a system, achieving a unified quantum-classical language and an elegant version of the quantum-to-classical transition. We briefly discuss the structure of observables and dynamics within our framework.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  2. Decoherence and the quantum-to-classical transition (Springer, Berlin, 2007, Corrected Second Printing, 2008), xv+416pp., ISBN 978-3-540-35773-5, hardcover, 74.85 euro. [REVIEW]N. P. Landsman - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (1):94-95.
  3.  4
    A Logical Approach to the Quantum-to-Classical Transition.Sebastian Fortin, Manuel Gadella, Federico Holik & Marcelo Losada - 2019 - In Quantum Worlds Perspectives on the Ontology of Quantum Mechanics. Cambridge University Press. pp. 360 - 378.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  34
    Essay Review of: Maximilian Schlosshauer, Decoherence and the Quantum-To-Classical Transition.Nicolaas P. Landsman - unknown
  5.  96
    On Quantum-Classical Transition of a Single Particle.Agung Budiyono - 2010 - Foundations of Physics 40 (8):1117-1133.
    We discuss the issue of quantum-classical transition in a system of a single particle with and without external potential. This is done by elaborating the notion of self-trapped wave function recently developed by the author. For a free particle, we show that there is a subset of self-trapped wave functions which is particle-like. Namely, the spatially localized wave packet is moving uniformly with undistorted shape as if the whole wave packet is indeed a classical free particle. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  6.  81
    A Continuous Transition Between Quantum and Classical Mechanics. I.Partha Ghose - 2002 - Foundations of Physics 32 (6):871-892.
    In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative formulation of mechanics which provides a continuous transition between quantum and classical mechanics via environment-induced decoherence.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  7.  84
    Between Quantum and Classical Gravity: Is There a Mesoscopic Spacetime?Eolo Di Casola, Stefano Liberati & Sebastiano Sonego - 2015 - Foundations of Physics 45 (2):171-176.
    Between the microscopic domain ruled by quantum gravity, and the macroscopic scales described by general relativity, there might be an intermediate, “mesoscopic” regime, where spacetime can still be approximately treated as a differentiable pseudo-Riemannian manifold, with small corrections of quantum gravitational origin. We argue that, unless one accepts to give up the relativity principle, either such a regime does not exist at all—hence, the quantum-to-classical transition is sharp—, or the only mesoscopic, tiny corrections conceivable are (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  8.  39
    A Continuous Transition Between Quantum and Classical Mechanics. II.Partha Ghose & Manoj K. Samal - 2002 - Foundations of Physics 32 (6):893-906.
    Examples are worked out using a new equation proposed in the previous paper to show that it has new physical predictions for mesoscopic systems.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  10.  58
    Classicality First: Why Zurek’s Existential Interpretation of Quantum Mechanics Implies Copenhagen.Javier Sánchez-Cañizares - 2019 - Foundations of Science 24 (2):275-285.
    Most interpretations of Quantum Mechanics alternative to Copenhagen interpretation try to avoid the dualistic flavor of the latter. One of the basic goals of the former is to avoid the ad hoc introduction of observers and observations as an inevitable presupposition of physics. Non-Copenhagen interpretations usually trust in decoherence as a necessary mechanism to obtain a well-defined, observer-free transition from a unitary quantum description of the universe to classicality. Even though decoherence does not solve the problem of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  2
    Order, chaos, order: the transition from classical to quantum physics.Philip Stehle - 1994 - New York: Oxford University Press.
    Explores the confusion among physicists at the beginning of the 20th century when experimental findings kept not fitting into their mechanical view of the universe, the theoretical speculations and experimental innovations they responded with, and the new science that emerged. The mathematical details are set apart in boxes to allow nontechnical readers to engage the flow of the narrative uninterrupted. Paper edition (unseen), $29.95. Annotation copyright by Book News, Inc., Portland, OR.
    Direct download  
     
    Export citation  
     
    Bookmark  
  12.  50
    The transitions among classical mechanics, quantum mechanics, and stochastic quantum mechanics.Franklin E. Schroeck - 1982 - Foundations of Physics 12 (9):825-841.
    Various formalisms for recasting quantum mechanics in the framework of classical mechanics on phase space are reviewed and compared. Recent results in stochastic quantum mechanics are shown to avoid the difficulties encountered by the earlier approach of Wigner, as well as to avoid the well-known incompatibilities of relativity and ordinary quantum theory. Specific mappings among the various formalisms are given.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  13.  52
    On the transition from classical to quantum mechanics in generalized coordinates.Gary R. Gruber - 1976 - Foundations of Physics 6 (1):111-113.
    The classical Hamiltonian in generalized coordinates is given asH=1/2 Σ i.k p i g ik p k . We show that there is no operator of the formP i= −iA(qi) (∂/∂qi)+Gi(qi) (note that the Hermitian momentum operatorP i H is of this form) such that the quantum Hamiltonian operatorH Q is given asH Q =1/2 Σ i,k P i g ik P k or1/2 Σ i,k g ik P i P k , etc. In order to maintain a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14. A Decoherence-Based Approach to the Classical Limit in Bohm’s Theory.Davide Romano - 2023 - Foundations of Physics 53 (2):1-27.
    The paper explains why the de Broglie–Bohm theory reduces to Newtonian mechanics in the macroscopic classical limit. The quantum-to-classical transition is based on three steps: (i) interaction with the environment produces effectively factorized states, leading to the formation of _effective wave functions_ and hence _decoherence_; (ii) the effective wave functions selected by the environment—the pointer states of decoherence theory—will be well-localized wave packets, typically Gaussian states; (iii) the quantum potential of a Gaussian state becomes negligible (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  15.  29
    The Transition from Quantum Field Theory to One-Particle Quantum Mechanics and a Proposed Interpretation of Aharonov–Bohm Effect.Benliang Li, Daniel W. Hewak & Qi Jie Wang - 2018 - Foundations of Physics 48 (7):837-852.
    In this article, we demonstrate a sense in which the one-particle quantum mechanics and the classical electromagnetic four-potential arise from the quantum field theory. In addition, the classical Maxwell equations are derived from the QFT scattering process, while both classical electromagnetic fields and potentials serve as mathematical tools to approximate the interactions among elementary particles described by QFT physics. Furthermore, a plausible interpretation of the Aharonov–Bohm effect is raised within the QFT framework. We provide a (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  16. Transit time of a freely falling quantum particle in a background gravitational field.P. C. W. Davies - unknown
    Using a model quantum clock, I evaluate an expression for the time of a nonrelativistic quantum particle to transit a piecewise geodesic path in a background gravitational field with small spacetime curvature (gravity gradient), in the case that the apparatus is in free fall. This calculation complements and extends an earlier one (Davies 2004) in which the apparatus is fixed to the surface of the Earth. The result confirms that, for particle velocities not too low, the quantum (...)
     
    Export citation  
     
    Bookmark  
  17.  9
    Role of the Electromagnetic Vacuum in the Transition from Classical to Quantum Mechanics.Luis de la Peña & Ana María Cetto - 2022 - Foundations of Physics 52 (4):1-17.
    We revisit the nonrelativistic problem of a bound, charged particle subject to the random zero-point radiation field, with the purpose of revealing the mechanism that takes it from the initially classical description to the final quantum-mechanical one. The combined effect of the zpf and the radiation reaction force results, after a characteristic time lapse, in the loss of the initial conditions and the concomitant irreversible transition of the dynamics to a stationary regime controlled by the field. In (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  18.  24
    Classical limit and quantum logic.Marcelo Losada, Sebastian Fortin & Federico Holik - 2018 - International Journal of Theoretical Physics 57:465–475.
    The more common scheme to explain the classical limit of quantum mechanics includes decoherence, which removes from the state the interference terms classically inadmissible since embodying non-Booleanity. In this work we consider the classical limit from a logical viewpoint, as a quantum-to-Boolean transition. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  19.  99
    Quantum, classical and intermediate: An illustrative example. [REVIEW]Diederik Aerts & Thomas Durt - 1994 - Foundations of Physics 24 (10):1353-1369.
    We present a model that allows one to build structures that evolve continuously from classical to quantum, and we study the intermediate situations, giving rise to structures that are neither classical nor quantum. We construct the closure structure corresponding to the collection of eigenstate sets of these intermediate situations, and demonstrate how the superposition principle disappears during the transition from quantum to classical. We investigate the validity of the axioms of quantum mechanics (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  20.  22
    The quantum-like approach to modeling classical rationality violations: an introduction.Franco Vaio - 2019 - Mind and Society 18 (1):105-123.
    Psychological empirical research has shown that human choice behavior often violates the assumptions of classical rational choice models. In the last few decades a new research field has emerged which aims to account for the observed choice behavior by resorting to the concepts and mathematical techniques developed in the realm of quantum physics, such as the “mental state vector” defined in a Hilbert space and the interference of quantum probability. This article is a short introduction to the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  21.  30
    A new look at the transition of classical to quantum mechanics.Gary R. Gruber - 1975 - Foundations of Physics 5 (1):59-61.
    In a recent “Rejoinder” by Landau,(8) he indicates that there is an error in a previous article of mine. In fact, this was corrected in an immediately subsequent article(2) of mine, and the “intriguing problem” to which Landau refers is solved in this subsequent article. In the present paper, I consolidate these and other ideas on the subject. In particular, I show that by discussing generalized coordinates in quantum mechanics one achieves much new insight, both philosophical and physical, in (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  22. A decoherence-based approach to the classical limit in Bohm's theory.Davide Romano - 2023 - Foundations of Physics 53 (41):1-27.
    The paper explains why the de Broglie-Bohm theory reduces to Newtonian mechanics in the macroscopic classical limit. The quantum-to-classical transition is based on three steps: (i) interaction with the environment produces effectively factorized states, leading to the formation of effective wave functions and hence decoherence; (ii) the effective wave functions selected by the environment–the pointer states of decoherence theory–will be well-localized wave packets, typically Gaussian states; (iii) the quantum potential of a Gaussian state becomes negligible (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  23.  14
    Evolution: classical philosophy meets quantum science.Somnath Bhattacharyya - 2023 - Boca Raton, FL: CRC Press.
    This book reconceptualizes the ancient philosophy of "dualism" and a "trinity" applied to classical and quantum nonequilibrium phenomena. In addition to classical mechanics and electrodynamics, a remarkable connection of this philosophy with quantum mechanics is established which can be useful for quantum computing and the development of quantum artificial intelligence. Packed with the recent theoretical models, quantum simulations of black holes, and experimental observations of quantum phase transitions, this book brings a holistic (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  24.  28
    The Pendulum as a Vehicle for Transitioning from Classical to Quantum Physics: History, Quantum Concepts, and Educational Challenges.Marianne B. Barnes, James Garner & David Reid - 2004 - Science & Education 13 (4-5):417-436.
  25. Quantum information theoretic approach to the mind–brain problem.Danko D. Georgiev - 2020 - Progress in Biophysics and Molecular Biology 158:16-32.
    The brain is composed of electrically excitable neuronal networks regulated by the activity of voltage-gated ion channels. Further portraying the molecular composition of the brain, however, will not reveal anything remotely reminiscent of a feeling, a sensation or a conscious experience. In classical physics, addressing the mind–brain problem is a formidable task because no physical mechanism is able to explain how the brain generates the unobservable, inner psychological world of conscious experiences and how in turn those conscious experiences steer (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  26.  6
    Pointers for Quantum Measurement Theory.Jay Lawrence - 2023 - Foundations of Physics 53 (4):1-17.
    In the iconic measurements of atomic spin-1/2 or photon polarization, one employs two separate noninteracting detectors. Each detector is binary, registering the presence or absence of the atom or the photon. For measurements on a d-state particle, we recast the standard von Neumann measurement formalism by replacing the familiar pointer variable with an array of such detectors, one for each of the d possible outcomes. We show that the unitary dynamics of the pre-measurement process restricts the detector outputs to the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  27.  11
    Real Virtuality and Actual Transitions: Historical Reflections on Virtual Entities before Quantum Field Theory.Alexander S. Blum & Martin Jähnert - 2024 - Perspectives on Science 32 (3):329-349.
    This paper studies the notion of virtuality in the Bohr-Kramers-Slater theory of 1924. We situate the virtual entities of BKS within the tradition of the correspondence principle and the radiation theory of the Bohr model. We show how, in this context, virtual oscillators emerged as classical substitute radiators and were used to describe the otherwise elusive quantum transitions. They played an effective role in the quantum theory of radiation while remaining categorically distinct and ontologically separated from the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  28. Consistent Quantum Mechanics Admits No Mereotopology.Chris Fields - 2012 - Axiomathes (1):1-10.
    It is standardly assumed in discussions of quantum theory that physical systems can be regarded as having well-defined Hilbert spaces. It is shown here that a Hilbert space can be consistently partitioned only if its components are assumed not to interact. The assumption that physical systems have well-defined Hilbert spaces is, therefore, physically unwarranted.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  29.  35
    Local Selective Realism: Shifting from Classical to Quantum Electrodynamics.Cristian Soto & Diego Romero-Maltrana - 2020 - Foundations of Science 25 (4):955-970.
    This article elaborates local selective realism in view of the shifting from classical to quantum electrodynamics. After some introductory remarks, we critically address what we call global selective realism, hence setting forth the background for outlining local selective realism. When examining the transition from classical to quantum electrodynamics, we evaluate both continuities and discontinuities in observational features, mathematical structures, and ontological presuppositions. Our argument leads us to criticise the narrow understanding of limiting-case strategies, and to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  30.  36
    Identical Quantum Particles as Distinguishable Objects.Dennis Dieks & Andrea Lubberdink - 2022 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (3):259-274.
    According to classical physics _particles_ are basic building blocks of the world. These classical particles are distinguishable objects, individuated by unique combinations of physical properties. By contrast, in quantum mechanics the received view is that particles of the same kind (“identical particles”) are physically indistinguishable from each other and lack identity. This doctrine rests on the quantum mechanical (anti)symmetrization postulates together with the “factorist” assumption that each single particle is represented in exactly one factor space of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  31. A quantum physical argument for panpsychism.Shan Gao - 2013 - Journal of Consciousness Studies 20 (1-2):59-70.
    It has been widely thought that consciousness has no causal efficacy in the physical world. However, this may be not the case. In this paper, we show that a conscious being can distinguish definite perceptions and their quantum superpositions, while a physical measuring system without consciousness cannot distinguish such nonorthogonal quantum states. The possible existence of this distinct quantum physical effect of consciousness may have interesting implications for the science of consciousness. In particular, it suggests that consciousness (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  32.  37
    Identical Quantum Particles as Distinguishable Objects.Dennis Dieks & Andrea Lubberdink - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 53 (3):1-16.
    According to classical physics particles are basic building blocks of the world. These classical particles are distinguishable objects, individuated by unique combinations of physical properties. By contrast, in quantum mechanics the received view is that particles of the same kind are physically indistinguishable from each other and lack identity. This doctrine rests on the quantum mechanical symmetrization postulates together with the “factorist” assumption that each single particle is represented in exactly one factor space of the tensor (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  33.  35
    Black Holes: Interfacing the Classical and the Quantum.B. P. Kosyakov - 2008 - Foundations of Physics 38 (7):678-694.
    The central idea of this paper is that forming the black hole horizon is attended with the transition from the classical regime of evolution to the quantum one. We offer and justify the following criterion for discriminating between the classical and the quantum: creations and annihilations of particle-antiparticle pairs are impossible in the classical reality but possible in the quantum reality. In flat spacetime, we can switch from the classical picture of field (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark  
  34.  19
    Representational Realism, Closed Theories and the Quantum to Classical Limit.Christian de Ronde - unknown
    In this paper we discuss the representational realist stance as a pluralist ontic approach to inter-theoretic relationships. Our stance stresses the fact that physical theories require the necessary consideration of a conceptual level of discourse which determines and configures the specific field of phenomena discussed by each particular theory. We will criticize the orthodox line of research which has grounded the analysis about QM in two metaphysical presuppositions —accepted in the present as dogmas that all interpretations must follow. We will (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  35. Application of Quantum Darwinism to Cosmic Inflation: An Example of the Limits Imposed in Aristotelian Logic by Information-based Approach to Gödel’s Incompleteness. [REVIEW]Nicolás F. Lori & Alex H. Blin - 2010 - Foundations of Science 15 (2):199-211.
    Gödel’s incompleteness applies to any system with recursively enumerable axioms and rules of inference. Chaitin’s approach to Gödel’s incompleteness relates the incompleteness to the amount of information contained in the axioms. Zurek’s quantum Darwinism attempts the physical description of the universe using information as one of its major components. The capacity of quantum Darwinism to describe quantum measurement in great detail without requiring ad-hoc non-unitary evolution makes it a good candidate for describing the transition from (...) to classical. A baby-universe diffusion model of cosmic inflation is analyzed using quantum Darwinism. In this model cosmic inflation can be approximated as Brownian motion of a quantum field, and quantum Darwinism implies that molecular interaction during Brownian motion will make the quantum field decohere. The quantum Darwinism approach to decoherence in the baby-universe cosmic-inflation model yields the decoherence times of the baby-universes. The result is the equation relating the baby-universe’s decoherence time with the Hubble parameter, and that the decoherence time is considerably shorter than the cosmic inflation period. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  36.  58
    Time Symmetric Quantum Mechanics and Causal Classical Physics?Fritz W. Bopp - 2017 - Foundations of Physics 47 (4):490-504.
    A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual “near future” macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  37. From the 'Free Will Theorems' to the 'Choice Ontology' of Quantum Mechanics.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (33):1-10.
    If the concept of “free will” is reduced to that of “choice” all physical world share the latter quality. Anyway the “free will” can be distinguished from the “choice”: The “free will” involves implicitly certain preliminary goal, and the choice is only the mean, by which it can be achieved or not by the one who determines the goal. Thus, for example, an electron has always a choice but not free will unlike a human possessing both. Consequently, and paradoxically, the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  38.  8
    Quantum Dynamics of a Particle in a Tracking Chamber.Rodolfo Figari - 2014 - Berlin, Heidelberg: Imprint: Springer. Edited by Alessandro Teta.
    In the original formulation of quantum mechanics the existence of a precise border between a microscopic world, governed by quantum mechanics, and a macroscopic world, described by classical mechanics was assumed. Modern theoretical and experimental physics has moved that border several times, carefully investigating its definition and making available to observation larger and larger quantum systems. The present book examines a paradigmatic case of the transition from quantum to classical behavior: A quantum (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  39.  21
    Causality in the Classical Limit for Quantum Electrodynamics.Gregory C. Dente - 2018 - Foundations of Physics 48 (6):628-635.
    We use the path integral form of quantum electrodynamics to show that a causal classical limit to QED can be derived by functionally integrating over the photon coordinates, starting from an initial photon vacuum and ending in a final coherent radiation state driven by the anticipated classical charged particle trajectories. The resulting charged particle transition amplitude depends only on particle coordinates. When the \ limit is taken, only those particle paths that are not constrained by the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  40. Quantum Occasionalism.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    Both transition and transformation link the ideal and material into a whole. Future is what “causes” the present, and the latter in turn is what “causes” the past. That kind of “reverse causality” needs free choice and free will in the present in order to be able to be realized unlike classical causality. A few properties feature the concept of “quantum occasionalism” as follows. Some hypothetical entity generates successively a series of well-ordered states. That hypothetical entity is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41.  78
    A Simple Example of “Quantum Darwinism”: Redundant Information Storage in Many-Spin Environments.Robin Blume-Kohout & Wojciech H. Zurek - 2005 - Foundations of Physics 35 (11):1857-1876.
    As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the “objects of interest.” Exactly how this information is inscribed in the environment is essential for the emergence of “the classical” from the (...) substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system’s state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of “the fittest information” (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment’s role in the quantum-classical transition beyond the traditional paradigm of decoherence. (shrink)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42.  30
    The Twofold Role of Observables in Classical and Quantum Kinematics.Federico Zalamea - 2018 - Foundations of Physics 48 (9):1061-1091.
    Observables have a dual nature in both classical and quantum kinematics: they are at the same time quantities, allowing to separate states by means of their numerical values, and generators of transformations, establishing relations between different states. In this work, we show how this twofold role of observables constitutes a key feature in the conceptual analysis of classical and quantum kinematics, shedding a new light on the distinguishing feature of the quantum at the kinematical level. (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  43.  24
    The Twofold Role of Observables in Classical and Quantum Kinematics.Federico Zalamea - 2018 - Foundations of Physics 48 (9):1061-1091.
    Observables have a dual nature in both classical and quantum kinematics: they are at the same time quantities, allowing to separate states by means of their numerical values, and generators of transformations, establishing relations between different states. In this work, we show how this twofold role of observables constitutes a key feature in the conceptual analysis of classical and quantum kinematics, shedding a new light on the distinguishing feature of the quantum at the kinematical level. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  44. A response to Stanley Klein: A dialogue on the relevance of quantum theory to religion.Lothar Schafer - 2006 - Zygon 41 (3):593-598.
    I respond to Stanley Klein's critique of my essay “Quantum Reality, the Emergence of Complex Order from Virtual States, and the Importance of Consciousness in the Universe,” arguing in support of the necessity to derive a quantum perspective of evolution rather than adhering to an essentially classical view. In response to Klein's criticism of my concept of a cosmic morality, the origins of that concept are traced back to Zeno of Citium. I wholeheartedly embrace Klein's suggestion that (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  45. Physical Entity as Quantum Information.Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (35):1-15.
    Quantum mechanics was reformulated as an information theory involving a generalized kind of information, namely quantum information, in the end of the last century. Quantum mechanics is the most fundamental physical theory referring to all claiming to be physical. Any physical entity turns out to be quantum information in the final analysis. A quantum bit is the unit of quantum information, and it is a generalization of the unit of classical information, a bit, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  46.  98
    Classicality, the Ensemble Interpretation, and Decoherence: Resolving the Hyperion Dispute. [REVIEW]M. Schlosshauer - 2008 - Foundations of Physics 38 (9):796-803.
    We analyze seemingly contradictory claims in the literature about the role played by decoherence in ensuring classical behavior for the chaotically tumbling satellite Hyperion. We show that the controversy is resolved once the very different assumptions underlying these claims are recognized. In doing so, we emphasize the distinct notions of the problem of classicality in the ensemble interpretation of quantum mechanics and in decoherence-based approaches that are aimed at addressing the measurement problem.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  47.  83
    The concept of a proposition in classical and quantum physics.Robin Giles - 1979 - Studia Logica 38 (4):337 - 353.
    A proposition is associated in classical mechanics with a subset of phase space, in quantum logic with a projection in Hilbert space, and in both cases with a 2-valued observable or test. A theoretical statement typically assigns a probability to such a pure test. However, since a pure test is an idealization not realizable experimentally, it is necessary — to give such a statement a practical meaning — to describe how it can be approximated by feasible tests. This (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  48. Logical Entropy: Introduction to Classical and Quantum Logical Information theory.David Ellerman - 2018 - Entropy 20 (9):679.
    Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of this paper (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  50.  31
    Unconditional Quantum Correlations do not Violate Bell’s Inequality.Andrei Khrennikov - 2015 - Foundations of Physics 45 (10):1179-1189.
    In this paper I demonstrate that the quantum correlations of polarization observables used in Bell’s argument against local realism have to be interpreted as conditional quantum correlations. By taking into account additional sources of randomness in Bell’s type experiments, i.e., supplementary to source randomness, I calculate the complete quantum correlations. The main message of the quantum theory of measurement is that complete correlations can be essentially smaller than the conditional ones. Additional sources of randomness diminish correlations. (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 986