Results for 'Quantum theory Mathematical models'

980 found
Order:
  1. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  2.  13
    Classification Theory: Proceedings of the U.S.-Israel Workshop on Model Theory in Mathematical Logic Held in Chicago, Dec. 15-19, 1985.J. T. Baldwin & U. Workshop on Model Theory in Mathematical Logic - 1987 - Springer.
    Direct download  
     
    Export citation  
     
    Bookmark  
  3. The Potential of Using Quantum Theory to Build Models of Cognition.Zheng Wang, Jerome R. Busemeyer, Harald Atmanspacher & Emmanuel M. Pothos - 2013 - Topics in Cognitive Science 5 (4):672-688.
    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  4. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  60
    Husserl, the mathematization of nature, and the informational reconstruction of quantum theory.Philipp Berghofer, Philip Goyal & Harald Wiltsche - 2020 - Continental Philosophy Review 54 (4):413-436.
    As is well known, the late Husserl warned against the dangers of reifying and objectifying the mathematical models that operate at the heart of our physical theories. Although Husserl’s worries were mainly directed at Galilean physics, the first aim of our paper is to show that many of his critical arguments are no less relevant today. By addressing the formalism and current interpretations of quantum theory, we illustrate how topics surrounding the mathematization of nature come to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  6.  45
    Old Quantum Theory: A Paraconsistent Approach.Bryson Brown - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:397 - 411.
    Just what forms do (or should) our cognitive attitudes towards scientific theories take? The nature of cognitive commitment becomes particularly puzzling when scientists' commitments are) inconsistent. And inconsistencies have often infected our best efforts in science and mathematics. Since there are no models of inconsistent sets of sentences, straightforward semantic accounts fail. And syntactic accounts based on classical logic also collapse, since the closure of any inconsistent set under classical logic includes every sentence. In this essay I present some (...)
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  7. Mathematics, Models and Zeno's Paradoxes.Joseph S. Alper & Mark Bridger - 1997 - Synthese 110 (1):143-166.
    A version of nonstandard analysis, Internal Set Theory, has been used to provide a resolution of Zeno's paradoxes of motion. This resolution is inadequate because the application of Internal Set Theory to the paradoxes requires a model of the world that is not in accordance with either experience or intuition. A model of standard mathematics in which the ordinary real numbers are defined in terms of rational intervals does provide a formalism for understanding the paradoxes. This model suggests (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  8. A Quantum Question Order Model Supported by Empirical Tests of an A Priori and Precise Prediction.Zheng Wang & Jerome R. Busemeyer - 2013 - Topics in Cognitive Science 5 (4):689-710.
    Question order effects are commonly observed in self-report measures of judgment and attitude. This article develops a quantum question order model (the QQ model) to account for four types of question order effects observed in literature. First, the postulates of the QQ model are presented. Second, an a priori, parameter-free, and precise prediction, called the QQ equality, is derived from these mathematical principles, and six empirical data sets are used to test the prediction. Third, a new index is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  9.  49
    Quantum Theory as a Critical Regime of Language Dynamics.Alexei Grinbaum - 2015 - Foundations of Physics 45 (10):1341-1350.
    Some mathematical theories in physics justify their explanatory superiority over earlier formalisms by the clarity of their postulates. In particular, axiomatic reconstructions drive home the importance of the composition rule and the continuity assumption as two pillars of quantum theory. Our approach sits on these pillars and combines new mathematics with a testable prediction. If the observer is defined by a limit on string complexity, information dynamics leads to an emergent continuous model in the critical regime. Restricting (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  10.  9
    Mathematical Models of Photons.Imants Bersons, Rita Veilande & Ojars Balcers - 2023 - Foundations of Physics 53 (4):1-16.
    Mathematics from the electromagnetic field quantization procedure and the soliton models of photons are used to construct a new 3D model of photons. Besides the interaction potential between the charged particle and the photons, which contains the annihilation and creation operators of photons, the new function for a description of free propagating photons is derived. This function presents the vector potential of the field, the function is a product of the harmonic oscillator eigenfunction with the well-defined coordinate of the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11.  20
    A Quantum Theory of Money and Value, Part 2: The Uncertainty Principle.David Orrell - 2017 - Economic Thought 6 (2):14.
    Economic forecasting is famously unreliable. While this problem has traditionally been blamed on theories such as the efficient market hypothesis or even the butterfly effect, an alternative explanation is the role of money – something which is typically downplayed or excluded altogether from economic models. Instead, models tend to treat the economy as a kind of barter system in which money's only role is as an inert medium of exchange. Prices are assumed to almost perfectly reflect the 'intrinsic (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  55
    Real World Interpretations of Quantum Theory.Adrian Kent - 2012 - Foundations of Physics 42 (3):421-435.
    I propose a new class of interpretations, real world interpretations, of the quantum theory of closed systems. These interpretations postulate a preferred factorization of Hilbert space and preferred projective measurements on one factor. They give a mathematical characterisation of the different possible worlds arising in an evolving closed quantum system, in which each possible world corresponds to a (generally mixed) evolving quantum state. In a realistic model, the states corresponding to different worlds should be expected (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  13.  4
    A New Organization of Quantum Theory Based on Quantum Probability.Stephen Bruce Sontz - 2023 - Foundations of Physics 53 (3):1-35.
    Quantum probability is used to provide a new organization of basic quantum theory in a logical, axiomatic way. The principal thesis is that there is one fundamental time evolution equation in quantum theory, and this is given by a new version of Born’s Rule, which now includes both consecutive and conditional probability as it must, since science is based on correlations. A major modification of one of the standard axioms of quantum theory allows (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  22
    The Present Situation in Quantum Theory and its Merging with General Relativity.Andrei Khrennikov - 2017 - Foundations of Physics 47 (8):1077-1099.
    We discuss the problems of quantum theory complicating its merging with general relativity. QT is treated as a general theory of micro-phenomena—a bunch of models. Quantum mechanics and quantum field theory are the most widely known. The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the old problem of infinities. And this (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  81
    Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12):4863-4896.
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  16. On the structure of the quantum-mechanical probability models.Nicola Cufaro-Petroni - 1992 - Foundations of Physics 22 (11):1379-1401.
    In this paper the role of the mathematical probability models in the classical and quantum physics is shortly analyzed. In particular the formal structure of the quantum probability spaces (QPS) is contrasted with the usual Kolmogorovian models of probability by putting in evidence the connections between this structure and the fundamental principles of the quantum mechanics. The fact that there is no unique Kolmogorovian model reproducing a QPS is recognized as one of the main (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  17. Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  18.  16
    The theory of absolutism: a unification of the theory of relativity and quantum theory.Christopher Joseph Fleischman - 2009 - Salt Lake City, UT: American University & Colleges Press.
    This book presents a theory that unifies these theories by using a philosophical approach to disclose an oversight in the theory of relativity.
    Direct download  
     
    Export citation  
     
    Bookmark  
  19.  11
    Quantum Models of Cognition and Decision.Jerome R. Busemeyer & Peter D. Bruza - 2012 - Cambridge University Press.
    Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modelling probabilistic-dynamic systems using two aspects of quantum theory. The first, 'contextuality', is a way to understand interference effects found with inferences and decisions under (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   59 citations  
  20. Some remarks on the foundations of quantum theory.E. B. Davies - 2005 - British Journal for the Philosophy of Science 56 (3):521-539.
    Although many physicists have little interest in philosophical arguments about their subject, an analysis of debates about the paradoxes of quantum mechanics shows that their disagreements often depend upon assumptions about the relationship between theories and the real world. Some consider that physics is about building mathematical models which necessarily have limited domains of applicability, while others are searching for a final theory of everything, to which their favourite theory is supposed to be an approximation. (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Progress in a many-minds interpretation of quantum theory.Matthew Donald - unknown
    In a series of papers, a many-minds interpretation of quantum theory has been developed. The aim in these papers is to present an explicit mathematical formalism which constitutes a complete theory compatible with relativistic quantum field theory. In this paper, which could also serve as an introduction to the earlier papers, three issues are discussed. First, a significant, but fairly straightforward, revision in some of the technical details is proposed. This is used as an (...)
     
    Export citation  
     
    Bookmark   9 citations  
  22.  17
    Spectral and scattering theory for quantum magnetic systems, July 7-11, 2008, CIRM, Luminy, Marseilles, France.Philippe Briet, François Germinet & Georgi Raikov (eds.) - 2009 - Providence, R.I.: American Mathematical Society.
    Volume 500, 2009 On the Infrared Problem for the Dressed Non-Relativistic Electron in a Magnetic Field Laurent Amour, ...
    Direct download  
     
    Export citation  
     
    Bookmark  
  23.  41
    Dynamical Correspondence in a Generalized Quantum Theory.Gerd Niestegge - 2015 - Foundations of Physics 45 (5):525-534.
    In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras . One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  24.  74
    A philosopher's understanding of quantum mechanics: possibilities and impossibilities of a modal interpretation.Pieter E. Vermaas - 1999 - New York: Cambridge University Press.
    This book is about how to understand quantum mechanics by means of a modal interpretation. Modal interpretations provide a general framework within which quantum mechanics can be considered as a theory that describes reality in terms of physical systems possessing definite properties. Quantum mechanics is standardly understood to be a theory about probabilities with which measurements have outcomes. Modal interpretations are relatively new attempts to present quantum mechanics as a theory which, like other (...)
    Direct download  
     
    Export citation  
     
    Bookmark   25 citations  
  25.  77
    Quantum-Like Model for Decision Making Process in Two Players Game: A Non-Kolmogorovian Model.Masanari Asano, Masanori Ohya & Andrei Khrennikov - 2011 - Foundations of Physics 41 (3):538-548.
    In experiments of games, players frequently make choices which are regarded as irrational in game theory. In papers of Khrennikov (Information Dynamics in Cognitive, Psychological and Anomalous Phenomena. Fundamental Theories of Physics, Kluwer Academic, Norwell, 2004; Fuzzy Sets Syst. 155:4–17, 2005; Biosystems 84:225–241, 2006; Found. Phys. 35(10):1655–1693, 2005; in QP-PQ Quantum Probability and White Noise Analysis, vol. XXIV, pp. 105–117, 2009), it was pointed out that statistics collected in such the experiments have “quantum-like” properties, which can not (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  26.  11
    Classical and quantum mental models and Freud's theory of unconscious/conscious mind.Andrei Khrennikov - 2002 - [Växjö, Sweden]: Växjö University Press.
  27.  60
    The Axiom of Choice in Quantum Theory.Norbert Brunner, Karl Svozil & Matthias Baaz - 1996 - Mathematical Logic Quarterly 42 (1):319-340.
    We construct peculiar Hilbert spaces from counterexamples to the axiom of choice. We identify the intrinsically effective Hamiltonians with those observables of quantum theory which may coexist with such spaces. Here a self adjoint operator is intrinsically effective if and only if the Schrödinger equation of its generated semigroup is soluble by means of eigenfunction series expansions.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  28.  3
    Relativistic quantum metaphysics: a first principles basis for the standard model of elementary particles.Stephen Blaha - 2008 - Auburn, NH: Pingree-Hill Publishing.
    This book develops new forms of logic: Operator Logic, Probabilistic Operator Logic and Quantum Operator Logic. It then proceeds to create a new view of metaphysics, Relativistic Quantum Metaphysics, for physical Reality. It then derives the form of The Standard Model of Elementary Particles. In particular it derives the origin of parity violation, the origin of the Strong interactions, and the origin of its peculiar symmetry. Also developed are new formalisms for Logic that are of interest in themselves. (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  29.  9
    Physics, mathematics, and all that quantum jazz.Shu Tanaka, Masamitsu Bando & Utkan Güngördü (eds.) - 2014 - New Jersey: World Scientific.
    My life as a quantum physicist / M. Nakahara -- A review on operator quantum error correction - Dedicated to Professor Mikio Nakahara on the occasion of his 60th birthday / C.-K. Li, Y.-T. Poon and N.-S. Sze -- Implementing measurement operators in linear optical and solid-state qubits / Y. Ota, S. Ashhab and F. Nori -- Fast and accurate simulation of quantum computing by multi-precision MPS: Recent development / A. Saitoh -- Entanglement properties of a (...) lattice-gas model on square and triangular ladders / S. Tanaka, R. Tamura and H. Katsura -- On signal amplification from weak-value amplification / Y. Shikano -- Topological protection of quantum information / K. Fujii -- Quantum annealing with antiferromagnetic fluctuations for mean-field models / Y. Seki and H. Nishimori -- A method to change phase transition nature - Toward annealing methods / R. Tamura and S. Tanaka -- Computational analysis of the first stage of the photosynthetic system, the light-dependent reaction, by quantum chemical simulation method / M. Tada-Umezaki -- Two-qubit gate operation on selected nearest neighboring qubits in a neutral atom quantum computer / E. Hosseini Lapasar... [et al.] -- A simple operator quantum error correction scheme avoiding fully correlated errors / C. Bagnasco, Y. Kondo and M. Nakahara -- Black hole predictability, classical and quantum / A. Ishibashi -- Classical field simulation of finite-temperature Bose gases / T. Sato -- Atomic quantum simulations of lattice gauge theory: Effect of gauge symmetry breaking / K. Kasamatsu, I. Ichinose and T. Matsui -- Recursive construction of noiseless subsystem for qudits / U. Gungordu... [et al.] -- Composite quantum gates for precise quantum control / M. Bando... [et al.] -- New formulation of statistical mechanics using thermal pure quantum states / S. Sugiura and A. Shimizu -- Thermodynamics in unitary time evolution / T. N. Ikeda -- Second law of thermodynamics with QC-mutual information / T. Sagawa. (shrink)
    Direct download  
     
    Export citation  
     
    Bookmark  
  30.  19
    The Dynamical Reduction Program: An Example of a Quantum Theory without Observers.Giancarlo Ghirardi - 1999 - Vienna Circle Institute Yearbook 7:43-58.
    After more than 70 years of debate about the difficulties that one encounters in working out a coherent view of physical processes based on the standard formulation of quantum mechanics, there is now a widespread belief that such difficulties do not arise from philosophical prejudices but represent precise mathematical and physical challenges which call for a physical solution. As J.S. Bell appropriately stated1 “the way ahead is unromantic in that it requires mathematical work by theoretical physicists, rather (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  31. Quantum-like models cannot account for the conjunction fallacy.Thomas Boyer-Kassem, Sébastien Duchêne & Eric Guerci - 2016 - Theory and Decision 81 (4):479-510.
    Human agents happen to judge that a conjunction of two terms is more probable than one of the terms, in contradiction with the rules of classical probabilities—this is the conjunction fallacy. One of the most discussed accounts of this fallacy is currently the quantum-like explanation, which relies on models exploiting the mathematics of quantum mechanics. The aim of this paper is to investigate the empirical adequacy of major quantum-like models which represent beliefs with quantum (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  32.  37
    Structures and Models of Scientific Theories: A Discussion on Quantum Non-Individuality.Décio Krause & Jonas R. B. Arenhart - unknown
    In this paper we consider the notions of structure and models within the semantic approach to theories. To highlight the role of the mathematics used to build the structures which will be taken as the models of theories, we review the notion of mathematical structure and of the models of scientific theories. Then, we analyse a case-study and argue that if a certain metaphysical view of quantum objects is adopted, namely, that which sees them as (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  34.  45
    On Abstraction in Mathematics and Indefiniteness in Quantum Mechanics.David Ellerman - 2021 - Journal of Philosophical Logic 50 (4):813-835.
    ion turns equivalence into identity, but there are two ways to do it. Given the equivalence relation of parallelness on lines, the #1 way to turn equivalence into identity by abstraction is to consider equivalence classes of parallel lines. The #2 way is to consider the abstract notion of the direction of parallel lines. This paper developments simple mathematical models of both types of abstraction and shows, for instance, how finite probability theory can be interpreted using #2 (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  54
    Toward a Physical Theory of Quantum Cognition.Taiki Takahashi - 2014 - Topics in Cognitive Science 6 (1):104-107.
    Recently, mathematical models based on quantum formalism have been developed in cognitive science. The target articles in this special issue of Topics in Cognitive Science clearly illustrate how quantum theoretical formalism can account for various aspects of human judgment and decision making in a quantitatively and mathematically rigorous manner. In this commentary, we show how future studies in quantum cognition and decision making should be developed to establish theoretical foundations based on physical theory, by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  36.  68
    Advances in Contemporary Logic and Computer Science: Proceedings of the Eleventh Brazilian Conference on Mathematical Logic, May 6-10, 1996, Salvador, Bahia, Brazil.Walter A. Carnielli, Itala M. L. D'ottaviano & Brazilian Conference on Mathematical Logic - 1999 - American Mathematical Soc..
    This volume presents the proceedings from the Eleventh Brazilian Logic Conference on Mathematical Logic held by the Brazilian Logic Society in Salvador, Bahia, Brazil. The conference and the volume are dedicated to the memory of professor Mario Tourasse Teixeira, an educator and researcher who contributed to the formation of several generations of Brazilian logicians. Contributions were made from leading Brazilian logicians and their Latin-American and European colleagues. All papers were selected by a careful refereeing processs and were revised and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  37.  32
    Defining ecology: Ecological theories, mathematical models, and applied biology in the 1960s and 1970s.Paolo Palladino - 1991 - Journal of the History of Biology 24 (2):223 - 243.
    Ever since the early decades of this century, there have emerged a number of competing schools of ecology that have attempted to weave the concepts underlying natural resource management and natural-historical traditions into a formal theoretical framework. It was widely believed that the discovery of the fundamental mechanisms underlying ecological phenomena would allow ecologists to articulate mathematically rigorous statements whose validity was not predicated on contingent factors. The formulation of such statements would elevate ecology to the standing of a rigorous (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  38.  7
    The Mathematical Structure of Integrated Information Theory.Johannes Kleiner & Sean Tull - 2020 - Frontiers in Applied Mathematics and Statistics 6.
    Integrated Information Theory is one of the leading models of consciousness. It aims to describe both the quality and quantity of the conscious experience of a physical system, such as the brain, in a particular state. In this contribution, we propound the mathematical structure of the theory, separating the essentials from auxiliary formal tools. We provide a definition of a generalized IIT which has IIT 3.0 of Tononi et al., as well as the Quantum IIT (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  39.  27
    Embedding Quantum Mechanics into a Broader Noncontextual Theory.Claudio Garola & Marco Persano - 2014 - Foundations of Science 19 (3):217-239.
    Scholars concerned with the foundations of quantum mechanics (QM) usually think that contextuality (hence nonobjectivity of physical properties, which implies numerous problems and paradoxes) is an unavoidable feature of QM which directly follows from the mathematical apparatus of QM. Based on some previous papers on this issue, we criticize this view and supply a new informal presentation of the extended semantic realism (ESR) model which embodies the formalism of QM into a broader mathematical formalism and reinterprets (...) probabilities as conditional on detection rather than absolute. Because of this reinterpretation a hidden variables theory can be constructed which justifies the assumptions introduced in the ESR model and proves its objectivity. When applied to special cases the ESR model settles long-standing conflicts (it reconciles Bell’s inequalities with QM), provides a general framework in which previous results obtained by other authors (as local interpretations of the GHZ experiment) are recovered and explained, and supports an interpretation of quantum logic which avoids the introduction of the problematic notion of quantum truth. (shrink)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  40.  68
    Mathematical developments in the rise of Yang–Mills gauge theories.Adam Koberinski - 2019 - Synthese (Suppl 16):1-31.
    In this paper I detail three major mathematical developments that led to the emergence of Yang–Mills theories as the foundation for the standard model of particle physics. In less than 10 years, work on renormalizability, the renormalization group, and lattice quantum field theory highlighted the utility of Yang–Mills type models of quantum field theory by connecting poorly understood candidate dynamical models to emerging experimental results. I use this historical case study to provide lessons (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  41. Mathematical quantum theory I: Random ultrafilters as hidden variables.William Boos - 1996 - Synthese 107 (1):83 - 143.
    The basic purpose of this essay, the first of an intended pair, is to interpret standard von Neumann quantum theory in a framework of iterated measure algebraic truth for mathematical (and thus mathematical-physical) assertions — a framework, that is, in which the truth-values for such assertions are elements of iterated boolean measure-algebras (cf. Sections 2.2.9, 5.2.1–5.2.6 and 5.3 below).The essay itself employs constructions of Takeuti's boolean-valued analysis (whose origins lay in work of Scott, Solovay, Krauss and (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  42. Quantum Mechanical Reality: Entanglement and Decoherence.Avijit Lahiri - manuscript
    We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences. Theories carry with them their own ontology while the metaphysics may remain the same in the background. We follow a broadly Kantian tradition, distinguishing between the noumenal and phenomenal realities where the former is independent of our perception while the latter is assembled from the former by means of fragmentary bits of interpretation. Theories do not tell us how (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  43. Towards a Coherent Theory of Physics and Mathematics: The Theory–Experiment Connection.Paul Benioff - 2005 - Foundations of Physics 35 (11):1825-1856.
    The problem of how mathematics and physics are related at a foundational level is of interest. The approach taken here is to work towards a coherent theory of physics and mathematics together by examining the theory experiment connection. The role of an implied theory hierarchy and use of computers in comparing theory and experiment is described. The main idea of the paper is to tighten the theory experiment connection by bringing physical theories, as mathematical (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Orchestrated objective reduction of quantum coherence in brain microtubules: The "orch OR" model for consciousness.Roger Penrose & Stuart Hameroff - 1996 - Mathematics and Computers in Simulation 40:453-480.
    Features of consciousness difficult to understand in terms of conventional neuroscience have evoked application of quantum theory, which describes the fundamental behavior of matter and energy. In this paper we propose that aspects of quantum theory (e.g. quantum coherence) and of a newly proposed physical phenomenon of quantum wave function "self-collapse"(objective reduction: OR -Penrose, 1994) are essential for consciousness, and occur in cytoskeletal microtubules and other structures within each of the brain's neurons. The particular (...)
     
    Export citation  
     
    Bookmark   8 citations  
  45.  70
    Quantum Cognition: Key Issues and Discussion.Jerome R. Busemeyer & Zheng Wang - 2014 - Topics in Cognitive Science 6 (1):43-46.
    Quantum cognition is an emerging field that uses mathematical principles of quantum theory to help formalize and understand cognitive systems and processes. The topic on the potential of using quantum theory to build models of cognition (Volume 5, issue 4) introduces and synthesizes its new development through an introduction and six core articles. The current issue presents 14 commentaries on the core articles. Five key issues surface, some of which are interestingly controversial and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  46.  31
    Quantum Structure in Cognition: Human Language as a Boson Gas of Entangled Words.Diederik Aerts & Lester Beltran - 2020 - Foundations of Science 25 (3):755-802.
    We model a piece of text of human language telling a story by means of the quantum structure describing a Bose gas in a state close to a Bose–Einstein condensate near absolute zero temperature. For this we introduce energy levels for the words (concepts) used in the story and we also introduce the new notion of ‘cogniton’ as the quantum of human thought. Words (concepts) are then cognitons in different energy states as it is the case for photons (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  47.  19
    Quantum Structure in Cognition: Human Language as a Boson Gas of Entangled Words.Diederik Aerts & Lester Beltran - 2020 - Foundations of Science 25 (3):755-802.
    We model a piece of text of human language telling a story by means of the quantum structure describing a Bose gas in a state close to a Bose–Einstein condensate near absolute zero temperature. For this we introduce energy levels for the words used in the story and we also introduce the new notion of ‘cogniton’ as the quantum of human thought. Words are then cognitons in different energy states as it is the case for photons in different (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  48.  8
    The Problem of Time: Quantum Mechanics Versus General Relativity.Edward Anderson - 2017 - Cham: Imprint: Springer.
    This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  49. On classical finite probability theory as a quantum probability calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  50.  47
    A Stochastic Model of Mathematics and Science.David H. Wolpert & David B. Kinney - 2024 - Foundations of Physics 54 (2):1-67.
    We introduce a framework that can be used to model both mathematics and human reasoning about mathematics. This framework involves stochastic mathematical systems (SMSs), which are stochastic processes that generate pairs of questions and associated answers (with no explicit referents). We use the SMS framework to define normative conditions for mathematical reasoning, by defining a “calibration” relation between a pair of SMSs. The first SMS is the human reasoner, and the second is an “oracle” SMS that can be (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
1 — 50 / 980