Solving a Joint Pricing and Inventory Control Problem for Perishables via Deep Reinforcement Learning

Complexity 2021:1-17 (2021)
  Copy   BIBTEX

Abstract

We study a joint pricing and inventory control problem for perishables with positive lead time in a finite horizon periodic-review system. Unlike most studies considering a continuous density function of demand, in our paper the customer demand depends on the price of current period and arrives according to a homogeneous Poisson process. We consider both backlogging and lost-sales cases, and our goal is to find a simultaneously ordering and pricing policy to maximize the expected discounted profit over the planning horizon. When there is no fixed ordering cost involved, we design a deep reinforcement learning algorithm to obtain a near-optimal ordering policy and show that there are some monotonicity properties in the learned policy. We also show that our deep reinforcement learning algorithm achieves a better performance than tabular-based Q-learning algorithms. When a fixed ordering cost is involved, we show that our deep reinforcement learning algorithm is effective and efficient, under which the problem of “curse of dimension” is circumvented.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,261

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-01-31

Downloads
12 (#1,090,149)

6 months
6 (#530,265)

Historical graph of downloads
How can I increase my downloads?