Bernoulli’s golden theorem in retrospect: error probabilities and trustworthy evidence

Synthese 199 (5-6):13949-13976 (2021)
  Copy   BIBTEX

Abstract

Bernoulli’s 1713 golden theorem is viewed retrospectively in the context of modern model-based frequentist inference that revolves around the concept of a prespecified statistical model Mθx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}_{{{\varvec{\uptheta}}}} \left( {\mathbf{x}} \right)$$\end{document}, defining the inductive premises of inference. It is argued that several widely-accepted claims relating to the golden theorem and frequentist inference are either misleading or erroneous: (a) Bernoulli solved the problem of inference ‘from probability to frequency’, and thus (b) the golden theorem cannot justify an approximate Confidence Interval (CI) for the unknown parameter θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta$$\end{document}, (c) Bernoulli identified the probability PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\left( A \right)$$\end{document} with the relative frequency 1n∑k=1nxk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{n}\sum\nolimits_{k = 1}^{n} {x_{k} }$$\end{document} of event A as a result of conflating f(x0|θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathbf{x}}_{0} |\theta )$$\end{document} with f(θ|x0),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\theta |{\mathbf{x}}_{0} ),$$\end{document} where x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{x}}_{0}$$\end{document} denotes the observed data, and (d) the same ‘swindle’ is currently perpetrated by the p value testers. In interrogating the claims (a)–(d), the paper raises several foundational issues that are particularly relevant for statistical induction as it relates to the current discussions on the replication crises and the trustworthiness of empirical evidence, arguing that: [i] The alleged Bernoulli swindle is grounded in the unwarranted claim θ^nx0≃θ∗,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\theta }_{n} \left( {{\mathbf{x}}_{0} } \right) \simeq \theta^{*},$$\end{document} for a large enough n, where θ^nX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\theta }_{n} \left( {\mathbf{X}} \right)$$\end{document} is an optimal estimator of the true value θ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta^{*}$$\end{document} of θ. [ii] Frequentist error probabilities are not conditional on hypotheses (H0 and H1) framed in terms of an unknown parameter θ since θ is neither a random variable nor an event. [iii] The direct versus inverse inference problem is a contrived and misplaced charge since neither conditional distribution f(x0|θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f({\mathbf{x}}_{0} |\theta )$$\end{document} and f(θ|x0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\theta |{\mathbf{x}}_{0} )$$\end{document} exists (formally or logically) in model-based (Mθx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}}_{{{\varvec{\uptheta}}}} \left( {\mathbf{x}} \right)$$\end{document}) frequentist inference.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,410

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Bayes' theorem.James Joyce - 2008 - Stanford Encyclopedia of Philosophy.
Bayes's Theorem.E. Eells - 2008 - Gogoa 8 (1):138.
Proposition 10, Book 2, in the Principia, revisited.Michael Nauenberg - 2011 - Archive for History of Exact Sciences 65 (5).
Non-additive probabilities in the work of Bernoulli and Lambert.Glenn Shafer - 1978 - Archive for History of Exact Sciences 19 (4):309-370.

Analytics

Added to PP
2022-01-05

Downloads
9 (#1,260,533)

6 months
2 (#1,206,727)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Aris Spanos
Virginia Tech

Citations of this work

No citations found.

Add more citations