Quantum relativistic action at a distance

Foundations of Physics 19 (12):1441-1477 (1989)
  Copy   BIBTEX

Abstract

A well-known relativistic action at a distance interaction of two unequal masses is altered so as to yield purely Newtonian radial forces with fixed particle rest masses in the system center-of-momentum inertial frame. Although particle masses experience no kinematic mass increase in this frame, speeds are naturally restricted to less than the speed of light. We derive a relation between the center-of-momentum frame total Newtonian energy and the composite rest mass. In a new proper time quantum formalism, we obtain an L2(R4 ⊗ R4, C) Hilbert space by varying individual particle rest masses. We propose the use of density operators, recognizing that the auxiliary proper time parameter is not an observable. The quantum formalism is applied to our altered version of the relativistic harmonic oscillator. Our generalized coherent states yield four-dimensional wave packets which follow the correct classical world lines. Appendices contain reviews of classical Hamiltonian reparametrization (incorporating our notion of manifest covariance), and a comparison of this work with the literature

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,674

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Quantum Potential in Relativistic Dynamics.John R. Fanchi - 2000 - Foundations of Physics 30 (8):1161-1189.
On classical and quantum relativistic dynamics.F. Reuse - 1979 - Foundations of Physics 9 (11-12):865-882.
Quantum Tunneling Time: Relativistic Extensions. [REVIEW]Dai-Yu Xu, Towe Wang & Xun Xue - 2013 - Foundations of Physics 43 (11):1257-1274.
Hidden Variables with Nonlocal Time.Hrvoje Nikolić - 2012 - Foundations of Physics 42 (5):632-646.

Analytics

Added to PP
2013-11-22

Downloads
92 (#189,209)

6 months
2 (#1,241,799)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Donald Salisbury
Austin College