The Connection of the Generalized Robinson–Foulds Metric with Partial Wiener Indices

Acta Biotheoretica 71 (1):1-10 (2023)
  Copy   BIBTEX

Abstract

In this work we propose the partial Wiener index as one possible measure of branching in phylogenetic evolutionary trees. We establish the connection between the generalized Robinson–Foulds (RF) metric for measuring the similarity of phylogenetic trees and partial Wiener indices by expressing the number of conflicting pairs of edges in the generalized RF metric in terms of partial Wiener indices. To do so we compute the minimum and maximum value of the partial Wiener index WT,r,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\left(T,r, n\right)$$\end{document}, where T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} is a binary rooted tree with root r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r$$\end{document} and n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} leaves. Moreover, under the Yule probabilistic model, we show how to compute the expected value of WT,r,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W\left(T,r, n\right)$$\end{document}. As a direct consequence, we give exact formulas for the upper bound and the expected number of conflicting pairs. By doing so we provide a better theoretical understanding of the computational complexity of the generalized RF metric.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,907

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Tameness in generalized metric structures.Michael Lieberman, Jiří Rosický & Pedro Zambrano - 2023 - Archive for Mathematical Logic 62 (3):531-558.
Strong reducibility of partial numberings.Dieter Spreen - 2005 - Archive for Mathematical Logic 44 (2):209-217.
Classical versus quantum gravity.Wolfgang Drechsler - 1993 - Foundations of Physics 23 (2):261-276.
The cosmic field tensor in bimetric general relativity.D. B. Kerrighan - 1985 - Foundations of Physics 15 (3):379-386.

Analytics

Added to PP
2023-01-26

Downloads
9 (#1,276,387)

6 months
4 (#854,689)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references