The Hierarchy Problem and the Cosmological Constant Problem Revisited

Foundations of Physics 49 (9):915-971 (2019)
  Copy   BIBTEX

Abstract

We argue that the Standard Model in the Higgs phase does not suffer from a “hierarchy problem” and that similarly the “cosmological constant problem” resolves itself if we understand the SM as a low energy effective theory emerging from a cutoff-medium at the Planck scale. We actually take serious Veltman’s “The Infrared–Ultraviolet Connection” addressing the issue of quadratic divergences and the related huge radiative correction predicted by the SM in the relationship between the bare and the renormalized theory, usually called “the hierarchy problem” and claimed that this has to be cured. We discuss these issues under the condition of a stable Higgs vacuum, which allows extending the SM up to the Planck cutoff. The bare Higgs boson mass then changes sign below the Planck scale, such that the SM in the early universe is in the symmetric phase. The cutoff enhanced Higgs mass term as well as the quartically enhanced cosmological constant term provide a large positive dark energy that triggers the inflation of the early universe. Reheating follows via the decays of the four unstable heavy Higgs particles, predominantly into top–antitop pairs, which at this stage are massless. Preheating is suppressed in SM inflation since in the symmetric phase bosonic decay channels are absent at tree level. The coefficients of the shift between bare and renormalized Higgs mass as well as of the shift between bare and renormalized vacuum energy density exhibit close-by zeros at about \ and \, respectively. The zero of the Higgs mass counter term triggers the electroweak phase transition, from the low energy Higgs phase and to the symmetric phase above the transition point. Since inflation tunes the total energy density to take the critical value of a flat universe and all contributing components are positive, it is obvious that the cosmological constant today is naturally a substantial fraction of the total critical density. Thus taking cutoff enhanced corrections seriously the Higgs system provides besides the masses of particles in the Higgs phase also dark energy, inflation and reheating in the early universe. The main unsolved problem in our context remains the origin of dark matter. Higgs inflation is possible and likely even unavoidable provided new physics does not disturb the known relevant SM properties substantially. The scenario highly favors to understand the SM and its main properties as a natural structure emerging at long distance. This in particular concerns the SM symmetry patterns and their consequences.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,440

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

The quantum vacuum and the cosmological constant problem.E. S. & H. Zinkernagel - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):663-705.
Problems with the cosmological constant problem.Adam Koberinski - 2021 - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime. Oxford University Press.
The quantum vacuum and the cosmological constant problem.Svend E. Rugh & Henrik Zinkernagel - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):663-705.
The quantum vacuum and the cosmological constant problem.Svend E. Rugh & Henrik Zinkernagel - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):663-705.
Unimodular quantum gravity and the cosmological constant.R. Percacci - 2018 - Foundations of Physics 48 (10):1364-1379.
Decision-Making Process and Information.Daegene Song - 2017 - INSPIRE-HEP, High Energy Physics (HEP) Database, CERN Online Publications, EUROPE.
Ciemna energia problemem kosmologii XXI wieku.Marek Szydłowski - 2005 - Roczniki Filozoficzne 53 (2):217-234.
Vacuum Energy as the Origin of the Gravitational Constant.Durmuş A. Demir - 2009 - Foundations of Physics 39 (12):1407-1425.
The cosmological constant, the fate of the universe, unimodular gravity, and all that.John Earman - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (4):559-577.
The problem of vitalism revisited.Osamu Kanamori - 2005 - Angelaki 10 (2):13 – 26.

Analytics

Added to PP
2019-05-18

Downloads
23 (#687,503)

6 months
7 (#441,834)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations